
ARA Software Engineering Curriculum Framework
Version 0.0

ARA Software Engineering Curriculum Framework

Table of Contents

I. Introduction ... 4
A. Background ... 4
B. Curriculum Framework.. 5

1. Software Engineering Competency Study, Phase II ... 5
2. Competency Measures.. 5

II. Software Engineering Competency Requirements .. 6
A. Acquisition... 7

1. Competency Matrix.. 7
2. Elaboration of the Competency Requirements for the Acquisition Specialty 8

a. Basic Software engineering Knowledge ... 8
b. Computing Fundamentals ... 9
c. Software Product Engineering .. 9
d. Software Requirements .. 10
e. Software Management .. 11
f. Software Acquisition... 11
g. Product Quality Control ... 12
h. Software Domains... 12

B. Testing... 13
1. Competency Matrix.. 13
2. Elaboration of the Competency Requirements for the Testing Specialty........................ 14

a. Basic Software engineering Knowledge ... 14
b. Computing Fundamentals ... 14
c. Software Product Engineering .. 15
d. Software Testing ... 15
e. Software Management .. 16
f. Product Quality Control .. 16
g. Software Domains... 16

C. Maintenance.. 17
1. Competency Matrix.. 17
2. Elaboration of the Competency Requirements for the Maintenance Specialty............... 18

a. Basic Software Engineering Knowledge... 18
b. Computing Fundamentals ... 19
c. Software Product Engineering .. 19
d. Software Implementation .. 19
e. Software Maintenance Fundamentals .. 20
f. Software Management ... 20

III. Software Engineering Curriculum Specification.. 21
A. Curriculum Organization ... 21
B. Learning Module Specifications .. 22

1. Basic Software Engineering Knowledge ... 22
2. Computing Fundamentals ... 24
3. Software Domains ... 25
4. Software Management (Fundamental).. 26
5. Software Management (Advanced)... 27
6. Product Quality Control ... 29
7. Software Product Engineering (Basic) .. 31
8. Software Product Engineering (Intermediate) ... 32
9. Software Product Engineering (Advanced) ... 34
10. Software Implementation ... 36

11. Software Requirements ... 38
12. Software Testing .. 39
13. Software Maintenance ... 41
14. Software Acquisition .. 42

IV. References.. 44

Appendix A: Learning Resources .. 45

ARA SwE Curriculum Framework 4 Version 0.0

ARA Software Engineering Curriculum Framework

I. INTRODUCTION

A. BACKGROUND

 Software is playing an increasingly important and central role in all aspects of daily life: in
government, banking and finance, education, transportation, entertainment, medicine, agriculture,
and law. The number, size, and application domains of programs being developed has grown
dramatically; as a result, billions are being spent on software development, and the livelihood and
lives of millions directly depend on the effectiveness of this development. Unfortunately, there
are severe problems in the cost, timeliness, and quality of many software products; and even
more serious, is the affect that quality problems can have on the safety-critical elements of
software that is central to many aviation systems.

The FAA, the air traffic control systems, individual aircraft and pilots, and others who plan for and
use the National Air Space, are relying more on software for their critical functions. Given this all-
pervasive nature of software in the FAA’s environment, the need for software engineers and
software-knowledgeable personnel is growing rapidly in all areas and levels of the FAA. The
need to develop a framework for determining, assessing, and improving software engineering
competencies within the FAA has becoming increasingly urgent.

In 1998, faculty in the Computer Science Department at Embry-Riddle Aeronautical University
worked on a FAA funded project titled "Study of FAA-ARA Software Engineering Competencies"
(referred to in this report as "Phase I"). This project was designed to help improve the software
engineering knowledge and abilities of FAA-ARA (Associate Administrator for Acquisitions and
Research) personnel. It sought to identify and categorize the body of knowledge for the discipline
of software engineering, and correlate this body of knowledge with the ICIP (Intellectual Capital
Investment Plan) documented responsibilities, activities, and competencies in ARA software-
related roles.

In support of the project objectives, the following deliverables were produced:
• Description of Software Engineering Knowledge - a structured description of the software

engineering body of knowledge (SwE-BOK)
• A Software Engineering Competency Model – a framework to establish the relationship

between ICIP defined ARA roles, the SwE-BOK and FAA-iCMM process areas.

Both these deliverables were published in FAA-ARA Software Engineering Competency Study:
Final Report [1] and the SwE-BOK was published as a Technical Report of the Software
Engineering Institute [2].

The project work highlighted the pervasive nature of software in the activities and responsibilities
of the ARA roles. One of the consequences of Phase I of the project was recognition of the
problem of defining ICIP roles with a single model. A particular ICIP role, when viewed in the
context of the actual jobs associated with the role, might encompass a rather complex subdivision
and hierarchy of sub-roles. For example in its study of the Software Engineering role the project
team discovered that although there were technical competencies common to all personnel
serving in software engineering roles, there were at least three specialty areas (acquisitions,
testing, and maintenance) that had additional distinct competency requirements.

ARA SwE Curriculum Framework 5 Version 0.0

B. CURRICULUM FRAMEWORK

1. Software Engineering Competency Study, Phase II

In 1999, a continuation of the FAA-ARA software engineering competency study begun in 1998.
The chief objective of this part of the study, called "Phase II", is to improve the software
engineering knowledge and abilities of FAA software engineers by
• updating and refining the ARA Software Engineering Competency Model [1] for the software

engineering role, with three specialty areas: acquisition, maintenance, and testing; and
• developing a description and outline for an ARA software engineering curriculum.

This document contains information, guidance, and a structure for designing and implementing a
curriculum for assessing and improving the competencies of ARA software engineers. The
"curriculum framework" described herein includes a detailed description of the software
competencies required in each specialty area. In addition, we outline and specify a set of
curriculum modules that support acquiring the knowledge embodied in the competency
requirements.

2. Competency Measures

As part of this work, a hierarchical system of evaluating and assessing the “depth of software
engineering knowledge “ (based on the SwE-BOK) of activities associated with the software
engineering role has been formulated. These depth of knowledge measures (with the exception
of the Mastery level) are based on earlier work [1] and are defined as follows:

A – Awareness: Represents a level of knowledge about a software engineering subject so that
an individual
• has awareness of the existence and the context of the subject within the subject
• can provide a general, informal explanation about the subject
• can identify references (human/ literature) that provide greater depth of knowledge about the

subject

U- Understanding: Represents a level of knowledge about a software engineering subject so
that an individual
• can explain the subject through definition and example, and appreciates the effort needed to

perform work related to the subject
• can monitor the progress of the work related to the subject
• can evaluate the quality of the work related to the subject

E – Execution: Represents a level of knowledge about a software engineering subject so that an
individual
• can apply the knowledge to produce software engineering products
• can apply the knowledge to analyze and evaluate methods and techniques in the subject
• can inform others about the content and practices associated with the subject

M -Mastery: Represents a level of knowledge about a software engineering subject so that an
individual
• can educate and mentor others about the content and practices associated with the subject
• can provide consultation and expert advice about the subject
• can describe the connections and interactions between the subject and other knowledge

components, and provide judgement as to the competency required for tasks associated with
the subject

ARA SwE Curriculum Framework 6 Version 0.0

In Section II we use the competency measures to designate the level of knowledge and practice
needed by software engineers to carry out their tasks. We also recommend (in Section III)
minimum training necessary to attain this knowledge. In all cases the training must be
supplemented by on-the-job experience in order to reach the desired competency level; this is
especially true for knowledge components with designations at the "execution" level.

It should be noted that, in Section II, none of the specialties have knowledge designated at the
"mastery" level. Since we are identifying minimum competency requirements for each of the
specialties, the first three levels of competency are sufficient measures. However, it would be
expected that in the FAA there would be individual engineers that possess mastery level
competency for one or more of the knowledge components (e.g., a maintenance software
engineer with mastery level competency for the Software Maintenance knowledge component).

II. SOFTWARE ENGINEERING COMPETENCY REQUIREMENTS

In this section we provide a description of the minimum competency requirements for three
specialty areas for the ARA Software engineering role: acquisition, testing, and maintenance.
The scope of the description is confined to required knowledge about software engineering.
Competency in other areas such as system engineering, or human factors, or in a specific
application domain (e.g. ATC) or product line is not addressed in this document. The description
of each specialty consists of a competency matrix along with a narrative elaboration of each
matrix element. Each specialty matrix describes the minimum knowledge required in the
specialty, in terms of a set of knowledge components, and the level of competency necessary for
each knowledge component.

In Phase I of this project a software engineering body of knowledge (SwE-BOK) [2] was
developed using a classification scheme based on a hierarchical decomposition consisting of
Knowledge Categories, Knowledge Areas, and Knowledge Units. The SwE-BOK classifies
software engineering knowledge into four knowledge categories:

1. Computing Fundamentals
2. Software Product Engineering
3. Software Management
4. Software Domains

Each knowledge category is subdivided into a number of knowledge areas. For example,
Software Product Engineering is divided into five knowledge areas:

2.1 Software Requirements Engineering
2.2 Software Design
2.3 Software Coding
2.4 Software Testing
2.5 Software Operation and Maintenance.

Each Knowledge area is further subdivided into a number of knowledge units. For example, the
Software Requirements Engineering is divided into three knowledge units:

2.1.1 Requirements Elicitation
2.1.2 Requirements Analysis
2.1.3 Requirements Specification

The competency model for a specific software engineering specialty is represented by a matrix
that is designed in the following fashion:

ARA SwE Curriculum Framework 7 Version 0.0

• The first column of the competency model names the knowledge components for the
specialty area. The knowledge component is represented by a collection of individual
knowledge elements (categories, areas, and units) from the SwE-BOK.

• The next four columns in the matrix represent knowledge levels (Awareness, Understanding,
and Execution) that are used in this model. Each labeled element of the matrix represents a
knowledge component and the specific depth of the knowledge, as a minimum, that the
software engineer must possess in order to perform his/her tasks. The below matrix
represents a partial representation of the competency model for a software engineer with
testing responsibilities. In this matrix, the “Basic Software Engineering Knowledge”
component includes the knowledge categories 1, 2, 3, and 4; and it requires competency at
the "awareness" level. However, the “Product Quality Control” knowledge component
requires competency at the execution level for the knowledge units 2.5.1, 3.3.1, 3.3.2, and
3.3.3. What we specify in this matrix is that, as a minimum, the software tester needs to
possess an awareness level of “Basic Software Engineering Knowledge” and requires an
execution level knowledge of “Product Quality Control”. Notice that the lower level
competency requirements for the “Basic” component (awareness of 1, 2, 3, 4) are augmented
by “deeper” competency requirements in some of the units for the “Product Quality Control”
component (execution of 2.5.1, 3.3.1, 3.3.2, 3.3.3).

Knowledge Component Awareness Understanding Execution
Basic Software Engineering Knowledge

1 Computing Fundamentals
2 Software Product Engineering
3 Software Management

 4 Software Domains

a

Product Quality Control
2.5.1 Software Installation and Operation
3.3.1 Software Quality Assurance
3.3.2 Verification and Validation
3.3.3 Software Metrics

f

Finally, the designator under the awareness level (e.g., a), corresponds to a narrative that
provides additional information and rationale for the competency requirement.

A. ACQUISITION

1. Competency Matrix

Specialty Area: Acquisition

Specialty Description: The acquisition software engineer serves an interface between the
FAA (users/customers that need to acquire a software system), the
development organization (a contractor that will be chosen to
develop the software system), and the system engineer responsible
for overall definition, development, integration and deployment of
the acquired software system. Therefore, the acquisition software
engineer has a wide range of activities, which extend from eliciting
requirements, through monitoring software development and
acceptance testing, to support the transition to the deployment and
maintenance phase.

ARA SwE Curriculum Framework 8 Version 0.0

Knowledge Component Awareness Understanding Execution
Basic Software Engineering Knowledge

1 Computing Fundamentals
2 Software Product Engineering
3 Software Management
4 Software Domains

a

Computing Fundamentals
 1.1.1 Basic Data Structures

1.2.2 Computer System Organization
1.2.3 Alternative Architectures
1.2.4 Communications and Networks
1.4 Operating Systems

b

Software Product Engineering
2.1 Software Requirements Engineering
2.2.1 Architectural Design
2.2.2 Abstract Specification
2.2.3 Interface Design
2.2.4 Data Structure Design
2.4.2 Integration Testing
2.4.3 System Testing
2.4.4 Performance Testing
2.4.6 Installation Testing
2.4.7 Test Documentation
2.5.1 Software Installation and Operation
2.5.2 Software Maintenance Operations
2.5.5 Software Reengineering

c

Software Requirements
 2.1.1 Requirements Elicitation

d

Software Management
 3.1 Software Project Management

3.2 Software Risk Management
3.4 Software Configuration Management
3.5 Software Process Management

e

Software Acquisition
 3.6 Software Acquisition

f

Product Quality Control
 2.4.5 Acceptance Testing

3.3 Software Quality Management

g

Software Domains
 4.3 Human-Computer Interaction
 4.6 Real-Time Systems

h

2. Elaboration of the Competency Requirements for the Acquisition
Specialty

a. Basic Software engineering Knowledge

Description This component includes basic knowledge about software
engineering as a discipline. It covers basic knowledge about the
fundamentals of computing, software product development, software
management, and various software application domains. It embodies
minimum prerequisite knowledge for more detailed and specialized
study of software engineering.

ARA SwE Curriculum Framework 9 Version 0.0

Competency
Requirements

Engineers must have awareness of the existence and the context of
the basic elements of software engineering. They must be able to
provide a general, informal explanation of the terminology, concepts,
and techniques associated with the discipline of computing; and they
must be able to identify references that provide greater depth of
knowledge about software engineering.

Rationale There are a wide variety of activities and tasks engaged in by ARA
software engineers that have responsibility for acquisition of
software. The knowledge, skills, and capabilities required depend on
the size and complexity of the software and the specific contractor
requirements. The chief responsibility for an "acquisition" software
engineer is to monitor the software development through the initial
phases of development: requirements specification, design,
implementation, and system and acceptance testing; and to support
transition of the software to the deployment and maintenance
phases. The engineer must have familiarity with an extensive array
of basic computing and software engineering knowledge, terms and
concepts across all four knowledge categories specified in [2]:
Computing Fundamentals, Software Product Engineering, Software
Management, and Software Domains. In-depth knowledge of each
area and unit is not required, but general awareness of the content
and significance of each unit is important.

b. Computing Fundamentals

Description This component covers knowledge, concepts, and principles of
computing that are essential to the development of real-time
embedded and distributed computing systems. It includes
knowledge about computer system organization and operation,
communication and network essentials, various computer
architectures, and the fundamentals of operating systems.

Competency
Requirements

Engineers must be able to explain computer system terminology and
concepts through definition and example. They must be able to
monitor and evaluate the development of software that interacts
with and controls external devices.

Rationale In order for acquisition software engineers to be able to interact
effectively with contracted software developers (analysts, designers,
programmers, and quality engineers) it is necessary for the
engineers to have an understanding of fundamental computing
terms and concepts. In order to make acquisition evaluations and
decisions it is important that these engineers possess basic
understanding of the organization and operation of digital computers
systems, and communication and network systems.

c. Software Product Engineering

Description This component covers fundamental knowledge about the
engineering of a software product: software requirement
engineering, software design, software testing and software
maintenance.

Competency Engineers must be able to explain, through definition and example,

ARA SwE Curriculum Framework 10 Version 0.0

Requirements software product engineering terminology and concepts. They
should understand the effort required for the various software
product engineering tasks. They must be able to monitor and
evaluate the development of a software product throughout its
development life-cycle.

Rationale Since the primary responsibility of an acquisition software engineer
is to monitor and support the development of a software product it is
important for such engineers to have a good comprehension of the
activities associated with software product development. In addition,
they should have sufficient knowledge to effectively judge and help
avoid maintainability and evolution problems. This requires a sound
understanding of requirements engineering, design specification
(including software architecture, interface and data design), and
software testing beyond the unit level. Also, in the beginning of a
project the acquisition engineer must interact with system
engineering in order to insure that the proposed software
development activities are achievable. Since acquisition software
engineers have to make judgements about the viability and
effectiveness of the contractor development methods and
processes, they need to be able to read, comprehend, and evaluate
the quality of requirements specifications, high-level design
documents, and system test plans. To insure good quality, they must
also be able to trace requirements through all phases of the software
development life cycle

d. Software Requirements

Description This component covers knowledge that supports the systematic
development of a complete understanding of the problem domain. It
includes knowledge about methods and techniques for uncovering,
discovering and communicating functional and non-functional
requirements and constraints; it provides a foundation for
decomposing a problem into intellectually manageable pieces by
using objects, functions and states.

Competency
Requirements

Engineers must be able to elicit and determine software needs for a
system. They must be able to support system developers and users
in problem definition and software requirements analysis and
specification. They must be able to analyze and evaluate software
collection methods and techniques. They must be able to inform
others about the content and practices of requirement elicitation.

Rationale The acquisition software engineer provides a critical interface been
the FAA as a user/customer and the contractor as the developer;
he/she must support the effort to establish a common understanding
of the requirements to be addressed by the software product. Hence,
it is important for the engineer to have knowledge and experience
with methods and techniques for uncovering, discovering, and
communicating functional and non-functional requirements and
constraints. In addition, the acquisition engineer should have
knowledge about the modeling of software requirements in the
information, functional, data, and behavioral domains of a problem.
An acquisition engineer must be equipped to make a trade-off
analysis between functional requirements and the constraints on a
system, along with all the derived requirements of a system, which

ARA SwE Curriculum Framework 11 Version 0.0

highlight the affect on development cost and schedule.

e. Software Management

Description The component provides comprehensive coverage of the concepts,
methods and techniques for managing the development of software
products. It includes knowledge about software activities concerned
with project management, management of risk, the configuration of a
software system, knowledge about how to produce high-quality
software and the development and improvement of software
processes.

Competency
Requirements

Engineers must be able to analyze and evaluate product
management elements: project plans, configuration management
systems, risk plans, quality assurance activities, and software
development processes. They must be able to interpret and analyze
software metrics, and assess process and product quality. They
must be able to analyze and evaluate various software management
methods, and to inform others about the content and practices of
software management.

Rationale The primary role of acquisition software engineers is to monitor the
development/acquisition of a software system. For many FAA
systems the size, complexity, and criticality of the software
components require significant and long-term management oversight
by the acquisition engineer. They must be able to review a software
development plan, evaluate a project budget, monitor project
progress, participate in a software review, and study and analyze
software measurement data. This requires knowledge about a wide
range of software management activities: project planning, quality
assurance, software metrics, configuration management, risk
management, and software processes.

f. Software Acquisition

Description This component provides comprehensive coverage of issues
associated with software acquisition. It includes knowledge about
the concepts, methods, processes, procedures, and techniques
associated with procurement, contracting, performance evaluation,
software management, and software quality control.

Competency
Requirements

Engineers must be able to carry out the software acquisition
activities concerned with procurement, contracting, and performance
evaluation. They must be able to organize and plan software
acquisition activities, track product development, and assess the
need for future support of a system. They must be able to analyze
and evaluate various acquisition methods, and to inform others
about the content and practices of software acquisition.

Rationale A software engineer working in the acquisition area must have
explicit knowledge and experience about acquiring a custom
software system from software developers that are independent of
the FAA. This includes knowledge about acquisition activities such
as procurement, contracting, performance evaluation, and providing
for future support of the software system. Knowledge about the
appraisal and acquisition of COTS software, and its use and

ARA SwE Curriculum Framework 12 Version 0.0

integration in software systems is becoming increasing critical for
acquisition engineers.

g. Product Quality Control

Description This includes in-depth knowledge about practices that are necessary
for producing high quality software. It covers material on quality
assurance, formal review, software metrics, and assessment and
analysis of software quality.

Competency
Requirements

Engineers must be able to apply knowledge about software quality to
participate in product reviews, assess the quality of a software
product, and evaluate an organization’s software assurance
capability. They must be able to analyze and evaluate various
software quality assurance methods, and to inform others about the
content and practices associated with the software quality control.

Rationale A key responsibility of an acquisition software engineer is to help
assure that acquired software satisfies its requirements and is defect
free. The acquisition engineer may participate in design reviews,
review quality plans, examine the results of testing, and verify
requirements tracing throughout software development. This
requires knowledge and experience with the concepts, methods, and
activities necessary to confirm that the software requirements are
carried through each phase in the software life cycle. The engineer
must have execution level knowledge about requirements tracing,
walkthroughs, inspections, and validation techniques.

h. Software Domains

Description The component consists of two parts: one on human computer
interaction and one on real-time systems. The human computer
interaction part covers user interfaces, computer graphics, and
hypertext/hypermedia. The real-time systems part includes
knowledge about basic properties of real-time application software
and the development of real-time software systems.

Competency
Requirements

Engineers must be able to explain the terminology and concepts,
through definition and example, in the software domains of human
computer interaction and real-time systems. They must be able to
monitor and evaluate the development of software that involves
significant requirements and functionality related to human computer
interaction and real-time computing.

Rationale Because of the nature of FAA computing requirements, intensive
user interaction and real-time embedded computing are typical
characteristics of its software systems. Hence, it is important that
acquisition software engineers have familiarity and understanding in
other "specialty" software domains; in particular the engineer should
have knowledge of human computer interaction and real-time
systems.

ARA SwE Curriculum Framework 13 Version 0.0

B. TESTING

1. Competency Matrix

Specialty Area: Testing

Specialty Description: The test software engineer is responsible for validating, through
software testing, a software system’s required functionality, its
conformance to FAA’s standards and procedures, and its agreement
with pre-defined development, design and operational environment
constraints. The test engineer plans, develops, implements, and
analyzes, and documents the testing of a software system.

Knowledge Component Awareness Understanding Execution
Basic Software Engineering Knowledge

1 Computing Fundamentals
2 Software Product Engineering
3 Software Management
4 Software Domains

a

Computing Fundamentals
1.1.1 Basic Data Structures
1.2.2 Computer System Organization
1.2.3 Alternative Architectures
1.2.4 Communications and Networks
1.3.2 Discrete Mathematical Structures
1.3.5 Probability and Statistics
1.4 Operating Systems
1.5.2 Programming Paradigms

b

Software Product Engineering
2.1 Software Requirements Engineering
2.2.1 Architectural Design
2.2.2 Abstract Specification
2.2.3 Interface Design
2.2.4 Data Structure Design
2.3.1 Code Implementation
2.4.1 Unit Testing

c

Software Testing
2.4.2 Integration Testing
2.4.3 System Testing
2.4.4 Performance Testing
2.4.5 Acceptance Testing
2.4.6 Installation Testing
2.4.7 Test Documentation

d

Software Management
3.1 Software Project Management
3.2 Software Risk Management
3.3 Software Quality Management
3.4 Software Configuration Management
3.5 Software Process Management

e

Product Quality Control
2.5.1 Software Installation and Operation
3.3.1 Software Quality Assurance
3.3.2 Verification and Validation
3.3.3 Software Metrics

f

Software Domains g

ARA SwE Curriculum Framework 14 Version 0.0

4.3 Human-Computer Interaction
4.6 Real-Time Systems

2. Elaboration of the Competency Requirements for the Testing Specialty

a. Basic Software engineering Knowledge

Description This component includes basic knowledge about software
engineering as a discipline. It covers basic knowledge about the
fundamentals of computing, software product development, software
management, and various software application domains. It embodies
minimum prerequisite knowledge for more detailed and specialized
study of software engineering.

Competency
Requirements

Engineers must have awareness of the existence and the context of
the basic elements of software engineering. They must be able to
provide a general, informal explanation of the terminology, concepts,
and techniques associated with the discipline of computing; and they
must be able to identify references that provide greater depth of
knowledge about software engineering.

Rationale There are a wide variety of activities and tasks engaged in by
software engineers with responsibilities for software testing. The
knowledge, skills, and capabilities required depend on the size and
complexity of the software and the type of testing (functional testing,
operational testing) being performed. The chief responsibility of a
"testing" software engineer is to verify and validate the quality of the
software based on the software requirements (both functional and
non-functional). Examples of software testing responsibilities
include the verification of a system’s functionality, conformance to a
set of FAA’s standard operating procedures, conformance to pre-
defined design constraints, environmental constraints and standards,
and conformance to other sets of constraints and standards. As a
result, the engineer must have familiarity with an extensive array of
basic computing and software engineering knowledge, terms and
concepts across all four knowledge categories specified in [2]:
Computing Fundamentals, Software Product Engineering, Software
Management, and Software Domains. In-depth knowledge of each
area and unit is not required, but general awareness of the content
and significance of each unit is important.

b. Computing Fundamentals

Description This component covers knowledge, concepts, and principles of
computing that are essential to the development of real-time
embedded and distributed computing systems. It includes
knowledge about computer system organization and operation,
communication and network essentials, various computer
architectures, and the fundamentals of operating systems.

Competency
Requirements

Engineers must be able to explain, through definition and example,
terminology and concepts associated with the fundamentals of
computing. They can use the elements of computing and statistics to
monitor and evaluate effective software testing.

ARA SwE Curriculum Framework 15 Version 0.0

Rationale It is important that test engineers possess basic understanding of
discrete mathematical structures, data structures, computer system
organization and operation, communication and network essentials,
various computer architectures, and the fundamentals of operating
systems. In addition, since effective software testing requires
attention to quantitative analysis and management of defects, test
engineers must have an understanding of statistical techniques.

c. Software Product Engineering

Description This component provides overview information about software
requirements engineering and software design. Issues such as
requirement elicitation, analysis, specification, and tracking are
covered. Also, Issues associated with software design such as
architectural, interface, and data structure design are addressed. In
addition, this component includes knowledge that supports the
implementation and testing of a small software module.

Competency
Requirements

Engineers must be able to explain, through definition and example,
software product engineering terminology and concepts. They
should understand the effort required for the various software
product engineering tasks. They must be able to describe the tasks
necessary for the implementation and testing of a small software
module.

Rationale Since the primary responsibility of a software engineer with testing
responsibility is to monitor and verify the quality of a software
product it is important for such engineers to have a good
comprehension of the activities associated with software product
development. In particular, the engineer must have a sound
understanding of requirements engineering, design specification
(including software architectures, interface design, and data design),
software coding (on occasion the test engineer may have to prepare
test drivers and other elements of the test environment), and a good
understanding of unit testing. The engineer may work with a
contractor as part of a development team, monitoring their testing
activity. As such they must be able to read, comprehend, and
evaluate the quality of requirement specifications and high-level
design documents; and understand the role of requirements tracing
to ensure all requirements have been properly implemented.

d. Software Testing

Description This component covers in-depth knowledge and activities that are
associated with software testing. It includes material on the software
testing life cycle, testware development, software testing techniques
and methods, and software testing metrics.

Competency
Requirements

Engineers must be able to carry out the software testing activities
concerned with validating that a software product satisfies its
requirements. They must be able to apply knowledge to analyze and
evaluate the effectiveness of software testing. They must be able to
inform others about the content and practices of software testing.

Rationale Test engineers need both deep and broad knowledge about
software testing; they are involved in a multi-stage process that

ARA SwE Curriculum Framework 16 Version 0.0

consists of activities for validating the software product, from the
most primitive elements up to a fully integrated system. Therefore,
test engineers must have execution knowledge of test
documentation, and integration, system, performance, acceptance,
and installation testing.

e. Software Management

Description The component provides overview knowledge about software
management responsibilities, methods, and activities. It includes
basic knowledge about the terminology and techniques associated
with project planning, quality assurance, software metrics,
configuration management, risk management, and software
processes.

Competency
Requirements

Engineers must be able to explain, through definition and example,
software management terminology and concepts. They should be
able to identify and evaluate management tasks associated with
software testing.

Rationale The test software engineer must possess the appropriate knowledge
to be able to deliver a tested product on time and within budget.
Hence, such engineers must have a good understanding of the
following: project planning, quality assurance, software metrics,
configuration management, risk management, and software
processes.

f. Product Quality Control

Description This includes in-depth knowledge about practices that are necessary
for producing high quality software. It covers material on quality
assurance, formal review, software metrics, and assessment and
analysis of software quality.

Competency
Requirements

Engineers must be able to apply knowledge about quality planning
and control, product and process metrics, and verification and
validation to assess and improve the quality of a software product.
They must be able to inform others about the content and practices
associated with software quality control.

Rationale The primary responsibility of the test software engineer is to validate
the quality of the software product. This means it is important that
he/she be familiar with concepts, methods, techniques, procedures,
and standards for producing high-quality software products. It is
beneficial that the engineer have execution knowledge about quality
planning and control, verification and validation activities,
measurement of product and process attributes, and assessing
effective software operation.

g. Software Domains

Description The component consists of two parts: one on human computer
interaction and one on real-time systems. The human computer
interaction part covers user interfaces, computer graphics, and
hypertext/hypermedia. The real-time systems part includes
knowledge about basic properties of real-time application software

ARA SwE Curriculum Framework 17 Version 0.0

and the development of real-time software systems.

Competency
Requirements

Engineers must be able to explain the terminology and concepts,
through definition and example, in the software domains of human
computer interaction and real-time systems. They must be able to
monitor and evaluate the development of software that involves
significant requirements and functionality related to human computer
interaction and real-time computing.

Rationale Because of the nature of FAA computing requirements, intensive
user interaction and real-time embedded computing are typical
characteristics of its software systems. Hence, it is important that
test software engineers have familiarity and understanding in other
"specialty" software domains; in particular the engineer should have
knowledge and understanding of human computer interaction and
real-time systems.

C. MAINTENANCE

1. Competency Matrix

Specialty Area: Maintenance

Specialty Description: The maintenance software engineer is responsible for making
changes to existing FAA software systems. This includes changes
that correct software defects, enhance the functionality of the
software, or change the operating environment for the software.
Specifically, maintenance engineers receive and analyze a
maintenance request, identify alternative solutions, chose the best
solution, and then design, implement, document, and test the
solution.

Knowledge Component Awareness Understanding Execution
Basic Software Engineering Knowledge

1 Computing Fundamentals
2 Software Product Engineering
3 Software Management
4 Software Domains

a

Computing Fundamentals
 1 Computing Fundamentals

b

Software Product Engineering
2.1 Software Requirements Engineering,
2.2 Software Design,
2.4 Software Testing,
2.5 Software Operation and Maintenance)

c

Software Implementation
1.1 Algorithms and Data Structures
1.5.2 Programming Paradigms
1.5.3 Programming Language Design and

Implementation
2.2.5 Algorithm Design
2.3 Software Coding
2.4 Software Testing
4.2 Database Systems

d

ARA SwE Curriculum Framework 18 Version 0.0

4.3 Human-Computer Interaction
4.6 Real-Time Systems

Software Maintenance Fundamentals
2.5.1 Software Installation and Operation
2.5.2 Software Maintenance Operations
2.5.3 Software Maintenance Process

e

Software Management
3.1 Software Project Management,
3.2 Software Risk Management
3.3 Software Quality Management
3.4 Software Configuration Management
3.5 Software Process Management

f

2. Elaboration of the Competency Requirements for the Maintenance
Specialty

a. Basic Software Engineering Knowledge

Description This component includes basic knowledge about software
engineering as a discipline. It covers basic knowledge about the
fundamentals of computing, software product development, software
management, and various software application domains. It embodies
minimum prerequisite knowledge for more detailed and specialized
study of software engineering.

Competency
Requirements

Engineers must have awareness of the existence and the context of
the basic elements of software engineering. They must be able to
provide a general, informal explanation of the terminology, concepts,
and techniques associated with the discipline of computing; and they
must be able to identify references that provide greater depth of
knowledge about software engineering.

Rationale There are a wide variety of activities and tasks engaged in by
software engineers that have responsibility for maintenance of
software. The knowledge, skills, and capabilities required depend on
the size and complexity of the software and the specific maintenance
tasks. The chief responsibility for a "maintenance" software
engineer is to analyze a maintenance request, identify alternative
solutions, chose the best solution, and then design, implement,
document, and test the solution. Next they may have to perform
additional tests to verify that the specific solution did not generate
any negative side-effects on the final product. The maintenance
engineer may be involved throughout the life cycle of a software
system (from working with acquisition to help insure a maintainable
system is developed to assisting in the installation phase of the
development). Hence, the engineer must have familiarity with an
extensive array of basic computing and software engineering
knowledge terms and concepts across the Software Product
Engineering, Software Management, and Software Domains
categories. In-depth knowledge of each area and unit is not required,
but general awareness of the content and significance of each unit is
important.

ARA SwE Curriculum Framework 19 Version 0.0

b. Computing Fundamentals

Description This component includes knowledge, concepts, theory, principles,
methods, skills, and applications of computing that form the
foundation for the development of software and the discipline of
software engineering. Specifically it includes knowledge of
algorithms and data structures, computer system organization and
operation, communication and network essentials, various computer
architectures, the fundamentals of operating systems, and discrete
mathematics.

Competency
Requirements

Engineers must be able to explain, through definition and example,
the terminology and concepts of computing fundamentals. They
must be able to use their knowledge of computing fundamentals to
monitor and evaluate the maintenance of software products.

Rationale A maintenance software engineer is required to develop software
modules/patches that improve or fix existing functionality for
operational software, and at times provide new functionality.
Therefore, it is important that software engineers possess basic
understanding of the fundamentals of computing.

c. Software Product Engineering

Description This component includes comprehensive knowledge about software
requirements engineering, software design, software testing and
software maintenance.

Competency
Requirements

Engineers must be able to apply knowledge about requirements,
design, testing, and maintenance to maintain a software product.
They must be able to inform others about the content and practices
associated with software product engineering.

Rationale The maintenance software engineer must respond to a written
request for some form of maintenance (correction, preventive,
enhancement, etc.). This written request acts as a requirement for a
special form of software development. The software engineer
maintenance specialist is required to design, implement, and test a
product that satisfies that requirement. Finally, the maintenance
specialty area is responsible for testing the overall system (system
and regression testing), and putting the new version of the product
back into operation. Therefore, software engineers with
maintenance specialties need to possess execution level knowledge
in key areas of software product engineering.

d. Software Implementation

Description This component covers in-depth knowledge associated with software
construction. It includes knowledge about algorithm design, detail
design, data abstraction, information hiding, programming
paradigms, coding, and unit, integration and system testing.

Competency
Requirements

Engineers must be able to apply knowledge about software
construction to develop and maintain small modules. They must be

ARA SwE Curriculum Framework 20 Version 0.0

able to inform others about the content and practices associated with
software construction.

Rationale In order to make changes to software, maintenance engineers must
be proficient in software construction; they must have expert
knowledge about detailed design, programming, and testing through
the system level. Because of the nature of FAA software, such
engineers need to be able to implement changes in software that
involve human-computer interfaces, and real-time and distributed
computing.

e. Software Maintenance Fundamentals

Description This component provides comprehensive coverage of software
installation and maintenance. It includes knowledge about the
maintenance process, maintenance operations, maintenance cost
estimation, change and version control, and maintenance
measurement and analysis.

Competency
Requirements

Engineers must be able to apply knowledge about software
maintenance to maintain software products. They must be able to
inform others about the content and practices associated with
software maintenance.

Rationale Software maintenance engineers are required to perform all aspects
of software maintenance at the FAA. As a result, the maintenance
specialist must possess execution level knowledge about software
maintenance operations and the software maintenance process.

f. Software Management

Description The component provides overview knowledge about software
management responsibilities, methods, and activities. It includes
basic knowledge about the terminology and techniques associated
with project planning, quality assurance, software metrics,
configuration management, risk management, and software
processes.

Competency
Requirements

Engineers must be able to explain, through definition and example,
software management terminology and concepts. They should be
able to identify and evaluate management tasks associated with
software maintenance.

Rationale The primary responsibility of the maintenance software engineer is
to design, implement, and test software modules that will enhance
and preserve the performance of an operational software product.
This requires an understanding level familiarity with management
concepts, methods, techniques, procedures and standards that are
used for producing high-quality software products.

ARA SwE Curriculum Framework 21 Version 0.0

III. SOFTWARE ENGINEERING CURRICULUM SPECIFICATION

A. CURRICULUM ORGANIZATION

The basic components of the framework are a set of fourteen “learning modules” that have
content and learning activities for conveying knowledge and practice that is embodied in the
competency requirements in Section II. Table 1 lists and provide basic information about the
fourteen modules. Detailed specification for the below listed modules is contained in part B of this
section. These module specifications provide information, guidance, and recommendations that
could be used to design and implement the module, or they could be used to evaluate and select
appropriate equivalent existing training modules.

Table 1: Software Engineering Learning Modules
ID Name Competency

Level
Coverage Specialty

LM1 Basic Software Engineering
Knowledge

Awareness KC 2, 3, 4 * A, T, M**

LM2 Computing Fundamentals Understanding KC 1 A, T, M
LM3 Software Domains Understanding KA 4.3, 4.6 A, T, M
LM4 Software Management

(Fundamental)
Understanding KA 3.1, 3.2, 3.3, 3.4, 3.5 T, M

LM5 Software Management (Advanced) Execution KA 3.1, 3.2, 3.3, 3.4, 3.5 A
LM6 Product Quality Control Execution KU 2.4.5, 2.5.1

KA 3.3
A, T

LM7 Software Product Engineering
(Basic)

Understanding KA 2.1
KU 2.2.1, 2.2.2, 2.2.3, 2.2.4,
2.3.1, 2.4.1

T

LM8 Software Product Engineering
(Intermediate)

Understanding KA 2.1
KU 2.2.1, 2.2.2, 2.2.3, 2.2.4,
2.4.2, 2.4.3, 2.4.4, 2.4.6,
2.4.7, 2.5.1, 2.5.2, 2.5.5

A, M

LM9 Software Product Engineering
(Advanced)

Execution KA 2.1, 2.2., 2.4 M

LM10 Software Implementation Execution KA 1.1, 2.3, 2.4
KU 1.5.2, 1.5.3, 2.2.5

M

LM11 Software Requirements Execution KU 2.1.1 A
LM12 Software Testing Execution KU 2.4.2, 2.4.3, 2.4.4, 2.4.5,

2.4.6, 2.4.7
T

LM13 Software Maintenance Execution KU 2.5.1, 2.5.2, 2.5.3 M
LM14 Software Acquisition Execution KA 3.6 A

* KC – knowledge category, KA – knowledge area, KU – knowledge unit

** A – Acquisition, T- Testing, M - Maintenance

ARA SwE Curriculum Framework 22 Version 0.0

B. LEARNING MODULE SPECIFICATIONS

This section contains detailed specifications for the fourteen modules listed in Table 1. Each
module specification includes information about related software engineering knowledge, the
competency level associated with the module, a module rationale, prerequisite requirements, a
short module description, and a listing of the objectives and content of the module. Each
specification also includes a recommended delivery format, suggested assessment techniques,
and an estimation of required student effort. The last part of each specification describes
appropriate resources and references for a module. Modules with an execution level of
competency require additional experience as part of their training; the additional experiential
training provides a deeper understanding and appreciation of the material needed to achieve the
required competency.

A learning module specification presents a high-level design for appropriate training material that
would support acquiring the specified knowledge at the indicated level of competency. These
modules provide guidance for the implementation of software engineering training material.
There are several factors that effect the depth of the coverage for a specific learning module: the
SwE-BOK elements, the competency level, the duration and total student effort for the module,
and the detail in which the module content is described. For example, for a module at an
“awareness” competency level, with a high-level description of module content and a short
duration, a very broad and high-level coverage of material would be appropriate. While a module
at the “execution” competency level, with a detailed module content and a long duration, would
require a more comprehensive coverage of the material with appropriate “execution” activities
incorporated within the module training.

Appendix A includes information about each of the Learning Resources (LRs) sited in the learning
module specifications. The recommended learning resources for each learning module are
divided to two categories. Although they may not cover every LM topic, the primary LRs best
satisfy the objectives of the LM; however, they may include additional material, be in a different
format, and require different amounts of effort than that suggested in the module specification.
The secondary LRs cover only a portion of the material described in the learning module. It is
important to note that, the members of this project have not assessed the quality or effectiveness
of the learning resources; therefore, siting of a specific LR does not signify its endorsement.

1. Basic Software Engineering Knowledge

Module LM 1 Basic Software Engineering Knowledge
Related
SwE-BOK
Elements

2 Software Product Engineering
3 Software Management
4 Software Domains

Competency Level Awareness
Rationale There are a wide variety of activities and tasks engaged in by FAA

software engineers. The knowledge, skills, and capabilities required
depend on the size and complexity of the software/system and the specific
software-related tasks. The engineer must have familiarity with an
extensive array of basic computing and software engineering knowledge
terms and concepts across the Software Product Engineering, Software
Management, and Software Domains categories. In-depth knowledge of
each area and unit is not required, but general awareness of the content
and significance of each category is important.

Prerequisite
Knowledge

• No prerequisite knowledge

ARA SwE Curriculum Framework 23 Version 0.0

Description The module provides an overview of software engineering as a discipline.
It covers basic knowledge about software product development, software
management, and various software application domains. It is designed for
anyone new to software engineering. It provides minimum prerequisite
knowledge for more detailed and specialized study of software
engineering.

Module Objectives Upon completion of this module the engineer will be able:
• identify and discuss the technical and engineering activities of

producing a software product
• describe the concepts, methods, techniques, and procedures for

managing software products and projects
• characterize the knowledge in specific domains that involve computing

and software engineering application or utilization.
Module Content The module will provide a brief overview of each of the following topic

areas:
• Introduction to Software Engineering

! Nature of Software
! Software Crises

• Software Product Engineering
! Requirements Engineering
! Design
! Coding
! Testing
! Operation and Maintenance

• Software Management
! Project Management
! Risk Management
! Quality Management
! Configuration Management
! Process Management
! Acquisition

• Software Domains
! Database Systems
! Human-Computer Interaction
! Real-Time Systems

Recommended
Module Format and
Learning Activities

• three hours of reading/study preparation
• two day workshop
• daily format

! lectures and discussions on various software engineering topics
! discuss a case study of the life-cycle of a real software product

• in-class exercises – analyze the case study and answer a set of
questions about software engineering concepts and terminology.

Required Effort 19 hours

Assessment • pre and post workshop self-assessment
• workshop exercise results

Resources • Primary Resources: LR 2, LR 16, LR 21, LR 24, LR 43
• Secondary Resources: LR 1, LR 3, LR 4, LR 5, LR 44

References • Brooks, F.P., "No Silver Bullet – Essence and Accident", The Mythical
Man-Month, Essays on Software Engineering, Anniversary Edition,
Addison-Wesley, 1995.

• Dorfman, M. and Thayer, R., eds., Software Engineering, IEEE
Computer Society Press, 1997.

• Marciniak, John J., Encyclopedia of Software Engineering, John Wiley
& Sons, Inc., 1994.

ARA SwE Curriculum Framework 24 Version 0.0

• Pressman, Roger S., Software Engineering: A Practitioner’s Approach,
Fourth Edition, McGraw-Hill, 1997.

• Sommerville, I., Software Engineering, 5th Edition, Addison-Wesley,
1995.

2. Computing Fundamentals

Module LM 2 Computing Fundamentals
Related
SwE-BOK
Elements

1 Computing Fundamentals

Competency Level Understanding
Rationale In order for FAA software engineers to be able to interact effectively with

contracted software, and to test and maintain the software acquired, it is
necessary for them to have an understanding of fundamental computing
terms and concepts. It is important that these engineers possess basic
understanding of computer system organization and operation,
communication and network essentials, various computer architectures,
and the fundamentals of operating systems.

Prerequisite
Knowledge

• No prerequisite knowledge

Description • This module includes knowledge, concepts, and principles of
computing that are essential to understanding of the development of
software products. The module covers five major areas: algorithms
and data structures, computer architecture, mathematical foundations,
operating systems, and programming languages.

Module Objectives Upon completion of this module the engineer will be able:
• recognize and discuss the key topics and terms within computing
• describe the relationship and dependency between the different areas

of computing
• explain how the various areas of computing relate to software

development
• pursue more advanced study in computing

Module Content The module will provide an overview of each of the following topics:
• Algorithms and Data Structures

! Basic Data Structures
! Design and Analysis of Algorithms

• Computer Architecture
! Digital Systems
! Computer System Organization
! Communications and Networks

• Mathematical Foundations
! Discrete Mathematics
! Probability and Statistics

• Operating Systems
! Operating Systems Fundamentals
! Process Management and Memory Management
! Security and Protection
! Distributed and Real-time Systems

• Programming Languages
! Theory of Programming Languages
! Programming Paradigms
! Programming Language Implementation

ARA SwE Curriculum Framework 25 Version 0.0

Recommended
Module Format and
Learning Activities

• five hours of reading/study preparation
• five day workshop with one day devoted to each of the five major topic

areas
• each one day segment is independent of the others; hence, engineers

with knowledge about some of the segments could take just those
segments needed

• daily format
! lectures and discussions on various computing topics
! short in-class individual exercises on the computing topics being

discussed
Required Effort 50 hours

Assessment • pre and post workshop self-assessment
• workshop exercise results

Resources • Primary Resources: LR 9, LR 10, LR 11, LR 13
• Secondary Resources: LR 6, LR 7, LR 8, LR 12, LR 14, LR 15

References • Brookshear, J. Glenn, Computer Science: An Overview, 4th edition,
Benjamin/Cummings, 1994.

• Grimaldi, R., Discrete and Combinatorial Mathematics, 3rd edition,
Addison-Wesley, 1994.

• Guttman, I., Wilkes, S. and Hunter, J., Introductory Engineering
Statistics, 2nd edition, John Wiley, 1971.

• Mano, M., Computer System Architecture, 3rd edition, Prentice-Hall,
1993.

• Tanenbaum, A., Operating System Design and Implementation,
Prentice-Hall, 1987.

• Weiss, M., Data Structures and Algorithm Analysis in C++, Addison,
Wesley, 1994.

• Wilson, Leslie B. and Robert G. Clark. Comparative Programming
Languages, 1993.

3. Software Domains

Module LM 3 Software Domains
Related
SwE-BOK
Elements

4.3 Human-Computer Interaction
4.6 Real-Time Systems

Competency Level Understanding
Rationale Because of the nature of FAA computing requirements, intensive user

interaction and real-time embedded computing are typical characteristics
of its software systems. Hence, it is important that ARA software engineers
have familiarity and understanding in other "specialty" software domains;
in particular, the engineer should have knowledge and understanding of
human computer interaction and real-time systems.

Prerequisite
Knowledge

Completion of the following module (or equivalent knowledge):
• LM 1: Basic Software Engineering
• LM2: Computing Fundamentals

Description The module is divided into two sub-modules: one in human computer
interaction and one in real-time systems. The human computer interaction
part covers user interfaces, computer graphics, and hypertext/hypermedia.
The real-time systems part includes knowledge about basic properties of
real-time application software and the development of real-time software
systems.

ARA SwE Curriculum Framework 26 Version 0.0

Module Objectives Upon completion of this module the engineer will be able:
• recognize and discuss the key topics and terms for human computer

interaction
• recognize and discuss the key topics and terms for real-time systems
• explain the principal issues in developing software that involves

human computer interaction
• explain the principal issues in developing software that involves real-

time systems
Module Content The module will provide a overview of each of the following topics:

• Human-Computer Interaction
! User Interfaces
! Computer Graphics
! Hypertext/Hypermedia

• Real-Time Systems
! Basic Properties of Real-time Application Software
! Design and Implementation for Real-time Software
! Concurrent Programming
! Resource Management
! Real-time Programming Languages and Operating Systems.

Recommended
Module Format and
Learning Activities

• four hours of reading/study preparation
• two day workshop with one day devoted to each of the two major topic

areas
• each day is treated as sub-module that is independent of the other
• daily format

! lectures and discussions on various major topics of the day
• short in-class individual exercises on the topics being discussed

Required Effort 20 hours

Assessment • pre and post workshop self-assessment
• workshop exercise results

Resources • Primary Resources: LR 16, LR 21
• Secondary Resources: LR 17, LR 18, LR 19, LR 20

References • Barfield, L., The User Interface: Concepts and Design, Addison-
Wesley, 1993.

• Burns, A. and Wellings, A., Real-Time Systems and their
Programming Languages, Addison-Wesley, 1997.

• Gomaa, H., Software Design Methods for Concurrent and Real-Time
Systems, Addison-Wesley, 1993.

• Hill, F., Computer Graphics, Macmillan, 1990.
• Proctor, R. and Zandt, T., Human Factors, Allyn and Bacon, 1994.

4. Software Management (Fundamental)

Module LM 4 Software Management (Fundamental)
Related
SwE-BOK
Elements

3.1 Software Project Management
3.2 Software Risk Management
3.3 Software Quality Management
3.4 Software Configuration Management
3.5 Software Process Management

Competency Level Understanding
Rationale In order to acquire, test and maintain software, FAA software engineers

require an understanding level familiarity with management concepts,
methods, techniques, procedures and standards that are used for

ARA SwE Curriculum Framework 27 Version 0.0

producing high-quality software products. Hence, such engineers must
have a good understanding of project planning, quality assurance,
software metrics, configuration management, risk management, and
software processes.

Prerequisite
Knowledge

Completion of the following module (or equivalent knowledge):
• LM 1: Basic Software Engineering

Description The module gives an overview of software management responsibilities,
methods, and activities. The module provides basic knowledge about the
terminology and techniques associated with project planning, quality
assurance, software metrics, configuration management, risk
management, and software processes.

Module Objectives Upon completion of this module the engineer will be able:
• identify and discuss the key operations and issues associated with

software management
• describe the principal elements of project planning, quality assurance,

software metrics, configuration management, and risk management
• discuss the need for software process and identify common software

process improvement issues
Module Content The module will provide a brief overview of each of the following topic

areas:
• Software Project Management
• Software Risk Management
• Software Quality Management
• Software Configuration Management
• Software Process Management

Recommended
Module Format and
Learning Activities

• three hours of reading/study preparation
• two day workshop
• daily format

! lectures and discussions on various software management topics
! discuss a case study of the life-cycle of a real software product

• in-class exercises – analyze the case study and answer a set of
questions about software management concepts and terminology.

Required Effort 19 hours

Assessment • pre and post workshop self-assessment
• workshop exercise results

Resources • Primary Resources: LR 22, LR 25
• Secondary Resources: LR 23, LR 24

References • Dorfman, M. and Thayer, R., eds., Software Engineering, IEEE
Computer Society Press, 1997.

• Marciniak, John J., Encyclopedia of Software Engineering, John Wiley
& Sons, Inc., 1994.

• Pressman, Roger S., Software Engineering: A Practitioner’s Approach,
Fourth Edition, McGraw-Hill, 1997.

• Sommerville, I., Software Engineering, 5th Edition, Addison-Wesley,
1995.

5. Software Management (Advanced)

Module LM 5 Software Management (Advanced)
Related
SwE-BOK
Elements

3.1 Software Project Management
3.2 Software Risk Management
3.3 Software Quality Management

ARA SwE Curriculum Framework 28 Version 0.0

3.4 Software Configuration Management
3.5 Software Process Management

Competency Level Execution
Rationale The primary role of acquisition software engineers is to monitor the

development/acquisition of a software system. For many FAA systems the
size, complexity, and criticality of the software components require
significant and long-term management oversight by the acquisition
engineer. They must be able to review a software development plan,
evaluate a project budget, monitor project progress, participate in a
software review, and study and analyze software measurement data. This
requires knowledge about a wide range of software management
activities: project planning, quality assurance, software metrics,
configuration management, risk management, and software processes.

Prerequisite
Knowledge

Completion of the following module (or equivalent knowledge):
• LM 1: Basic Software Engineering
• FAA Course: Project Management for Software Intensive Systems

Description The module provides for a comprehensive study of the concepts, methods
and techniques for managing the development of software products. It
includes learning about software activities concerned with project
management, management of risk, the configuration of a software system,
knowledge about how to produce high-quality software and the
development and improvement of software processes.

Module Objectives Upon completion of this module the engineer will be able:
• develop software project plan
• perform a software risk analysis
• assess a configuration management system
• evaluate the quality management organization and activities for a

software project
• describe the key elements and issues in software process

improvement
Module Content The module will cover the following topic areas:

• Software Project Management
• Software Risk Management
• Software Quality Management

! Software Quality Assurance
! Verification and Validation
! Software Metrics

• Software Configuration Management
! Software Configuration Identification
! Software Configuration Control
! Software Configuration Audit and Status Accounting

• Software Process Management
! Quantitative Software Process Management
! Software Process Improvement
! Software Process Assessment
! Software Process Engineering

Recommended
Module Format and
Learning Activities

• five hours of reading/study preparation
• four day workshop
• daily format

! Morning – lectures and discussions
! Afternoon – individual and group exercises

• exercises
! develop a software project plan
! develop a risk plan

ARA SwE Curriculum Framework 29 Version 0.0

! assess a configuration management system
! assess a quality management plan
! study and report on an organization-level software process system

Required Effort 40 hours

Additional Training • 6 months of supplemental experiential learning involving software
management activities

Assessment • Pre and post workshop self-assessment
• Workshop exercise results

Resources • Primary Resources: LR 22, LR 25, LR 26, LR 29, LR 30, LR 35, LR 36
• Secondary Resources: LR 23, LR 24, LR 27, LR 28,LR 31, LR 32, LR

33, LR 34, LR 37, LR 38
References • Buckley, F. J., Implementing Configuration Management: Hardware,

Software, and Firmware, IEEE Computer Society Press, 1996.Gillies,
A. C., Software Quality: Theory and Management, Chapman & Hall,
1992.

• Hall, E. M., Managing Risk, Addison-Wesley, 1998.
• Thayer, R. H., Software Engineering Project Management: A Top-

Down View, Tutorial: Software Engineering Project Management,
IEEE Computer Society Press, 1988.

• Humphrey, W. S., Managing the Software Process, Addison-Wesley,
1989.

• Dorfman, M. and Thayer, R., eds., Software Engineering, IEEE
Computer Society Press, 1997.

• Pressman, Roger S., Software Engineering: A Practitioner’s Approach,
Fourth Edition, McGraw-Hill, 1997.

6. Product Quality Control

Module LM 6 Product Quality Control
Related
SwE-BOK
Elements

2.5.1 Software Installation and Operation
3.3.1 Software Quality Assurance
3.3.2 Verification and Validation
3.3.3 Software Metrics

Competency Level Execution
Rationale The primary responsibility of a test software engineer is to validate and

verify the quality of the software product. This requires familiarity with
concepts, methods, techniques, procedures and standards for producing
high-quality software products; and execution knowledge about quality
planning and control, verification and validation activities, measurement of
product and process attributes, and assessing effective software
operation.

Prerequisite
Knowledge

Completion of the following modules (or equivalent knowledge):
• LM 1: Basic Software Engineering
• LM 2: Computing Fundamentals
• LM 7: Software Product Engineering (Basics)

Description This module provides in-depth knowledge and activities that are necessary
for producing high quality software. It covers material on quality
assurance, formal review, software metrics, and assessment and analysis
of software quality.

Module Objectives Upon completion of this module the engineer will be able:
• describe concepts, methods, techniques, procedures and standards

for producing high-quality software products

ARA SwE Curriculum Framework 30 Version 0.0

• explain how quality planning and control techniques are used in
software development

• use verification and validation activities to produce quality software
• measure product and process attributes
• use software metrics to assess process and product quality
• assess effective software operation

Module Content The module will include the following topic areas:
• Quality Assurance

! Organization of Quality Assurance Units
! Quality Control (planning, oversight, record keeping, analysis,

auditing, and reporting)
! Quality Assurance Techniques (Pareto analysis, trend analysis,

statistical quality control, and regression testing)
• Validation and Verification

! Basic Verification and Validation (V&V) Concepts (methods,
activities, and deliverables associated with each phase in the
software life cycle.)

! V&V Planning and Organization
! V&V Techniques (personal reviews, walkthroughs, and

inspections; traceability analysis; formal verification techniques;
Cleanroom techniques, and software testing)

• Software Reliability Model
• Software Fault Tree Analysis
• Software Metrics and Measurements

! Software Metric Fundamentals (collection, computation, analysis
and feedback)

! Metric Classification (product metrics, resource metrics, process
metrics)

• Methods and Techniques for Installing a Software Product
• Documentation and Transition to System Operation

Recommended
Module Format and
Learning Activities

• six hours of reading/study preparation
• five day workshop delivered one day a week
• daily format

! morning – lectures and discussions
! afternoon – individual and group in class exercises, plus individual

take home exercises
• exercises

! inspection of a software design specification
! individual code review
! computation and analysis of a set of metrics based on data

collected from a software development effort (requirements and
design metrics, inspection/review data, testing data)

! analysis of a software quality assurance plan
! review of software installation/operation documentation

Required Effort 46 hours

Additional Training • 6 months of supplemental experiential learning involving software
quality control activities

Assessment • pre and post workshop self-assessment
• workshop exercise results

Resources • Primary Resources: LR 30, LR 39, LR 42
• Secondary Resources: LR 29, LR 31, LR 32, LR 41

References • 1012-1998, IEEE Standard for Software Verification and Validation.
• 730-1998, IEEE Standard for Software Quality Assurance Plans.
• MIL-S-52779A, Software Quality Assurance Program Requirement,

ARA SwE Curriculum Framework 31 Version 0.0

1979.
• DI-QCIC-80572, DOD Software Quality Program Plan, 1988.
• 1061-1998, IEEE Standard for a Software Quality Metrics

Methodology.
• Arthur, L.J., Software Evolution, John Wiley, 1988.
• Gillies, A. C., Software Quality: Theory and Management, Chapman &

Hall, 1992.
• Weinberg, Quality Software Management (Volume 1-3), Dorset House

Publishing, 1993.
• Deutsch & Willis, Software Quality Engineering, A Total Technical and

Management Approach, Prentice Hall, 1988.
• Kaplan, Secrets of Software Quality, McGraw Hill, 1995.
• Ebenau, R., Software Inspection Process, McGraw Hill, 1994.
• Ince, D., ISO 9001 and Software Quality Assurance, McGraw-Hill,

1994.
• Kan, S. H., Metrics and Models in Software Quality Engineering,

Addison-Wesley, 1995.

7. Software Product Engineering (Basic)

Module LM 7 Software Product Engineering (Basics)
Related
SwE-BOK
Elements

2.1 Software Requirement Engineering
2.2.1 Architectural Design
2.2.2 Abstract Specification
2.2.3 Interface Design
2.2.4 Data Structure Design
2.3.1 Code Implementation
2.4.1 Unit Testing

Competency Level Understanding
Rationale Since the primary responsibility of a software engineer with testing

responsibility is to monitor and verify the quality of a software product , it is
important for such engineers to have a good comprehension of the
activities associated with software product development. In particular, the
engineer must have a sound understanding of requirements engineering,
design specification (including software architectures, interface design,
and data design), software coding (on occasion the test engineer may
have to prepare test drivers and other elements of the test environment),
and a good understanding of unit testing. The engineer may work with a
contractor as part of a development team, monitoring their testing activity.
As such they must be able to read, comprehend, and evaluate the quality
of requirement specifications and high-level design documents; and
understand the role of requirements tracing to ensure all requirements
have been properly implemented.

Prerequisite
Knowledge

Completion of the following modules (or equivalent knowledge):
• LM 1: Basic Software Engineering
• LM 2: Computing Fundamentals
• LM 3: Software Domains
• LM 4: Software Management (Fundamentals)

Description This module provides a general overview of software requirements
engineering, software design, software construction, and the software
testing of a small software component.

Module Objectives Upon completion of this module the engineer will be able:
• describe concepts, methods, techniques, procedures and standards

ARA SwE Curriculum Framework 32 Version 0.0

associated with software requirements and design
• track software requirements throughout the software development life

cycle
• perform a trace of an algorithm for a small software component
• assess the effectiveness of the implementation and test of a small

software component
Module Content The module will include the following topic areas:

• Software Requirements Engineering (requirement elicitation, analysis,
and specification)

• Software Design (Abstract specification, architectural, interface and
data structure design)

• Software Implementation (Algorithm development, and modular and
incremental programming)

Recommended
Module Format and
Learning Activities

• three hours of reading/study preparation
• three days workshop
• daily format

! Morning – lectures and discussions
! Afternoon – individual and group exercises

• exercises
! Requirement analysis
! Functional decomposition
! Requirement tracking
! Trace algorithm
! Evaluate software implementation

Required Effort 27 hours

Assessment • Pre and post workshop self-assessment
• Workshop exercise results

Resources • Primary Resources: LR 43, LR 44, LR 45
• Secondary Resources: LR 46, LR 48, LR 49, LR 51

References • 830-1993, IEEE Recommended Practice for Software Requirement
Specifications.

• P1233/D3, IEEE Guide for Developing System Requirements
Specification.

• Gause, D.C, G.M. Weinberg, Exploring Requirements Quality Before
Design, Dourset House Pub., 1989.

• Davis, A., Software Requirements: Objects, Functions & States,
Prentice Hall, 1993.

• Hetzel, B., The Complete Guide to Software Testing, Wiley, 1988
• Kendall, K.E., and J.E. Kendall, Systems Analysis and Design,

Prentice Hall, 1992.
• Pressman, R.S. Software Engineering A Practitioner's approach,

McGraw-Hill, 1997.
• Budgen, D. Software Design, Addison wesley, 1994.

8. Software Product Engineering (Intermediate)

Module LM 8 Software Product Engineering (Intermediate)
Related
SwE-BOK
Elements

2.2 Software Requirement Engineering
2.2.5 Architectural Design
2.2.6 Abstract Specification
2.2.7 Interface Design
2.2.8 Data Structure Design
2.4.1 Unit Testing

ARA SwE Curriculum Framework 33 Version 0.0

2.4.2 Integration Testing
2.4.3 System Testing
2.4.4 Performance Testing
2.4.6 Installation Testing
2.4.7 Test Documentation
2.5.1 Software Installation and Operation
2.5.2 Software Maintenance Operation
2.5.5 Software Reengineering

Competency Level Understanding
Rationale Since the primary responsibility of an acquisition software engineer is to

monitor and support the development of a software product it is important
for such engineers to have a good comprehension of the activities
associated with software product development. In addition, they should
have sufficient knowledge to effectively judge and help avoid the
maintainability and evolution problems. This requires a sound
understanding of requirements engineering, design specification (including
software architecture, interface and data design), and software testing
beyond the unit level. Also, in the beginning of a project the acquisition
engineer must interact with system engineering in order to insure that the
proposed software development activities are achievable. Since
acquisition software engineers have to make judgements about the
viability and effectiveness of the contractor development methods and
processes, they need to be able to read, comprehend, and evaluate the
quality of requirements specifications, high-level design documents, and
system test plans. To insure good quality, they must also be able to trace
requirements through all phases of the software development life cycle.

Prerequisite
Knowledge

Completion of the following modules (or equivalent knowledge):
• LM 1: Basic Software Engineering
• LM 2: Computing Fundamentals
• LM 3: Software Domains
• LM 4: Software Management (Fundamentals)

Description This module provides a detailed overview of software product engineering.
In particular, it covers knowledge about the terms, methods, and
techniques used in software requirements engineering, software design,
software testing, and installation and maintenance of software.

Module Objectives Upon completion of this module the engineer will be able:
• describe concepts, methods, techniques, procedures and standards

associated with software requirements and design
• track software requirements through software development life cycle
• describe the process, techniques and outcomes of software testing
• discuss the issues associated with software installation and

maintenance
Module Content The module will include the following topic areas:

• Software Requirements Engineering (requirement elicitation, analysis
and specification)

• Software Design (Abstract specification, architectural, interface, and
data structure design)

• Software Testing (Test documentation, integration, system,
performance, and installation testing)

• Software Installation and Maintenance
Recommended
Module Format and
Learning Activities

• five hours of reading/study preparation
• four days workshop
• daily format

! Morning – lectures and discussions

ARA SwE Curriculum Framework 34 Version 0.0

! Afternoon – individual and group exercises
• exercises

! Requirement analysis
! Functional decomposition
! Requirement tracking
! Algorithm design
! Software implementation

Required Effort 37 hours

Assessment • Pre and post workshop self-assessment
• Workshop exercise results

Resources • Primary Resources: LR 43, LR 44, LR 45, LR 60, LR 68
• Secondary Resources: LR 46, LR 48, LR 49, LR 51,LR 59, LR 65

References • 830-1993 IEEE Recommended Practice for Software Requirement
Specifications.

• P1233/D3 IEEE Guide for Developing System Requirements
Specification.

• 829-1998 IEEE Standard for Software Test Documentation.
• Gause, D.C, G.M. Weinberg, Exploring Requirements Quality Before

Design, Dourset House Pub., 1989.
• Davis, A., Software Requirements: Objects, Functions & States,

Prentice Hall, 1993.
• Hetzel, B., The Complete Guide to Software Testing, Wiley, 1988.
• Beizer, B., Software Testing Techniques, Thompson Computer Press,

1990.
• Jorgensen, P.C., Software Testing A Craftsman's Approach, CRC,

1995.
• Kendall, K.E., and J.E. Kendall, Systems Analysis and Design,

Prentice Hall, 1992.
• Pressman, R.S. Software Engineering A Practitioner's approach,

McGraw-Hill, 1997.
• Budgen, D. Software Design, Addison wesley, 1994.
• Glass, R.L., R.A. Noiseux, Software Maintenance Guidebook, Prentice

Hall, 1981.

9. Software Product Engineering (Advanced)

Module LM 9 Software Product Engineering (Advanced)
Related
SwE-BOK
Elements

2.3 Software Requirement Engineering
2.4 Software Design
2.4 Software Testing

Competency Level Execution
Rationale The software engineer with the maintenance specialty is responsible to

respond to a written request for some form of maintenance (correction,
preventive, enhancement, etc.). This written request acts as a
requirement for a special form of software development. The software
engineer maintenance specialist may be required to design, implement,
and test a product that satisfies that requirement. Finally, the maintenance
specialty area is responsible for testing the overall system (system and
regression testing), and putting the new version of the product back into
operation. Therefore, software engineers with maintenance specialties
need to possess execution level knowledge in key areas of software
product engineering.

ARA SwE Curriculum Framework 35 Version 0.0

Prerequisite
Knowledge

Completion of the following modules (or equivalent knowledge):
• LM 1: Basic Software Engineering
• LM 2: Computing Fundamentals
• LM 3: Software Domains
• LM 4: Software Management (Fundamentals)
• LM 8: Software Product Engineering (Intermediate)

Description This module provides in-depth coverage of software product engineering.
In particular, it covers the knowledge and activities for methods and
techniques used in software requirements engineering, software design,
and software testing.

Module Objectives Upon completion of this module the engineer will be able:
• describe concepts, methods, techniques, procedures and standards

associated with software requirements and design
• track software requirements through software development life cycle
• understand the process, techniques and outcomes of the software

testing
• understand issues associated with software installation and

maintenance operation
Module Content The module will include the following topic areas:

• Software Requirements Engineering
! Requirement Elicitation
! Requirement Analysis
! Requirement Specification

• Software Design
! Architectural Design
! Abstract Specification
! Interface Design
! Data Structure Design
! Algorithm Design

• Software Testing
! Unit Testing
! Integration Testing
! System Testing
! Performance Testing
! Installation Testing
! Documentation

Recommended
Module Format and
Learning Activities

• ten hours of reading/study preparation
• five days workshop
• daily format

! Morning – lectures and discussions
! Afternoon – individual and group exercises

• exercises
! Requirement analysis
! Functional decomposition
! Requirement tracking
! Algorithm design
! Software implementation
! Software maintenance
! Software reengineering

Required Effort 50 hours

Additional Training • 6 months of supplemental experiential learning involving product
engineering activities

Assessment • Pre and post workshop self-assessment
• Workshop exercise results

ARA SwE Curriculum Framework 36 Version 0.0

Resources • Secondary Resources: LR 47, LR 50, LR 64
References • 830-1993 IEEE Recommended Practice for Software Requirement

Specifications.
• P1233/D3 IEEE Guide for Developing System Requirements

Specification.
• 829-1998 IEEE Standard for Software Test Documentation.
• Gause, D.C, G.M. Weinberg, Exploring Requirements Quality Before

Design, Dourset House Pub., 1989.
• Davis, A., Software Requirements: Objects, Functions & States,

Prentice Hall, 1993.
• Hetzel, B., The Complete Guide to Software Testing, Wiley, 1988.
• Beizer, B., Software Testing Techniques, Thompson Computer Press,

1990.
• Jorgensen, P.C., Software Testing A Craftsman's Approach, CRC,

1995.
• Kendall, K.E., and J.E. Kendall, Systems Analysis and Design,

Prentice Hall, 1992.
• Pressman, R.S. Software Engineering A Practitioner's approach,

McGraw-Hill, 1997.
• Budgen, D. Software Design, Addison-Wesley, 1994.
• Glass, R.L., R.A. Noiseux, Software Maintenance Guidebook, Prentice

Hall, 1981.
• Martin, J, and G. McClure, Software Maintenance: The Problem and

Its Solution, Prentice Hall, 1983.
• Parikh, G., N. Zvegintzov, Tutorial on Software Maintenance, IEEE

Computer Society, 1983.

10. Software Implementation

Module LM 10 Software Implementation
Related
SwE-BOK
Elements

1.1 Algorithms and data structure
2.3 Software Coding
2.4 Software Testing
1.5.2 Programming paradigms
1.5.3 Programming language design and implementation
2.2.5 Algorithm design

Competency Level Execution
Rationale In order to make changes to software, maintenance engineers must be

proficient in software construction; they must have expert knowledge about
detailed design, programming, and testing through the system level.
Because of the nature of FAA software, such engineers need to be able to
implement changes in software that involve human-computer interfaces,
and real-time and distributed computing.

Prerequisite
Knowledge

Completion of the following modules (or equivalent knowledge):
• LM 1: Basic Software Engineering
• LM 2: Computing Fundamentals
• LM 3: Software Domains
• LM 9: Software Product Engineering (Advance)

Description This module provides in-depth knowledge associated with software
construction. The main purpose of this module is to provide information
(such as processes, techniques and tools) that is necessary for a software
engineer to start with a set of requirements, and use them to construct a
software component that satisfies those requirements. Issues such as

ARA SwE Curriculum Framework 37 Version 0.0

algorithm design, detail design, data abstraction, information hiding, unit,
integration and system testing are be discussed in this module. In
addition, this module provides a comparison between the different
programming paradigms and languages.

Module Objectives Upon completion of this module the engineer will be able:
• describe concepts, methods, techniques, procedures and standards

associated with software construction
• track software requirements through software development life cycle
• develop an algorithm from specification
• develop a detail design, and implement that design using an

appropriate programming language and paradigm
• perform unit integration and system testing

Module Content The module will include the following topic areas:
• Software Implementation
• Requirement Analysis
• Algorithm Design
• Programming
• Testing (unit, integration, and system)
• Programming Languages
• Different Programming Paradigms
• Different Programming Languages

Recommended
Module Format and
Learning Activities

• thirty hours of reading/study preparation
• six days workshop (Two days during the first week, followed by one

day for each of the next following four weeks)
• daily format

The first day of workshop will be all lecture, the next five days will have
the following format
! Morning – lectures and discussions
! Afternoon – individual and group exercises

• Exercises
! Number of programming assignments
! Unit and integration testing

Required Effort 78 hours

Additional Training • 6 months of supplemental experiential learning involving software
implementation

Assessment • Pre and post workshop self-assessment
• Workshop exercise results

Resources • Primary Resources: LR 7
• Secondary Resources: LR 59

References • Pressman, R.S. Software Engineering A Practitioner's approach,
McGraw-Hill, 1997.

• Savitch, W., Problem Solving with C++ The Object of Programming,
Addison Wesely, 1996.

• Carrano, Helman, Veroff, Data Abstraction and Problem Solving with
C++, Addison-Wesley, 1998.

• Dijkstra, E., A Discipline of Programming, Prentice Hall, 1976.

ARA SwE Curriculum Framework 38 Version 0.0

11. Software Requirements

Module LM 11 Software Requirements
Related
SwE-BOK
Elements

2.1.1 Requirement Elicitation

Competency Level Execution
Rationale The acquisition software engineer provides a critical interface between the

FAA as a user/customer and the contractor as the developer; he/she must
support the effort to establish a common understanding of the
requirements to be addressed by a software product. Hence, it is important
for the engineer to have knowledge and experience with methods and
techniques for uncovering, discovering, and communicating functional and
non-functional requirements and constraints. In addition, the acquisition
engineer should have knowledge about the modeling of software
requirements in the information, functional, data, and behavioral domains
of a problem. An acquisition engineer must be equipped to make a trade-
off analysis between functional requirements and the constraints on a
system, along with all the derived requirements of a system, which
highlight the affect on development cost and schedule.

Prerequisite
Knowledge

Completion of the following modules (or equivalent knowledge):
• LM 1: Basic Software Engineering
• LM 2: Computing Fundamentals
• LM 3: Software Domains
• LM 8: Software Product Engineering (Intermediate)

Description This module provides knowledge that supports the systematic
development of a complete understanding of the problem domain. This
unit also includes knowledge about methods and techniques for
uncovering, discovering and communicating functional and non-functional
requirements and constraints; it provides a foundation for decomposing a
problem into intellectually manageable pieces by using objects, functions
and states.

Module Objectives Upon completion of this module the engineer will be able:
• identify all the software stakeholders
• discover software requirements
• use appropriate interview types and techniques for requirement

elicitation
• use appropriate steps to assure the quality of the requirements

Module Content The module will include the following topic areas:
• Requirement Elicitation Techniques
• Interview Techniques
• Interview Types
• Use Case Analysis
• Viewpoint Analysis
• Modeling
• Partitioning
• Feasibility Analysis
• Requirements Quality Assurance

Recommended
Module Format and
Learning Activities

• four hours of reading/study preparation
• two days workshop
• daily format

! Morning – lectures and discussions
! Afternoon – individual and group exercises

ARA SwE Curriculum Framework 39 Version 0.0

• exercises
! Number of Case studies and role playing

Required Effort 20 hours

Additional Training • 3 months of supplemental experiential learning involving software
requirements elicitation

Assessment • Pre and post workshop self-assessment
• Workshop exercise results

Resources • Primary Resources: LR 52, LR 53, LR 56, LR 57
• Secondary Resources: LR 54, LR 55

References • 830-1993 IEEE Recommended Practice for Software Requirement
Specifications.

• P1233/D3 IEEE Guide for Developing System Requirements
Specification.

• Pressman, R.S., Software Engineering A Practitioner’s Approach,
McGraw Hill, 1997.

• Thayer, H.T., and M. Durfman, System and Software Requirements
Engineering, IEEE Computer Society Press Tutorial, 1990.

• Thayer, H.T., and M. Durfman, Software Requirement Engineering,
IEEE Computer Society, 1997.

12. Software Testing

Module LM 12 Software Testing
Related
SwE-BOK
Elements

2.4.2 Integration Testing
2.4.3 System Testing
2.4.4 Performance Testing
2.4.5 Acceptance Testing
2.4.6 Installation Testing
2.4.7 Test Documentation

Competency Level Execution
Rationale Test engineers need both deep and broad knowledge about software

testing; they are involved in a multi-stage process that consists of activities
for validating the software product, from the most primitive elements up to
a fully integrated system. Therefore, test engineers must have execution
knowledge of test documentation, and integration, system, performance,
acceptance, and installation testing.

Prerequisite
Knowledge

Completion of the following modules (or equivalent knowledge):
• LM1: Basic Software Engineering
• LM2: Computing Fundamentals
• LM4: Software Management (Fundamentals)
• LM7: Software Product Engineering (Basics)

Description This module provides in-depth knowledge and activities that are
associated with software testing. It covers material on the software testing
life cycle, testware development, software testing techniques and
methods, and software testing metrics.

Module Objectives Upon completion of this module the engineer will be able:
• describe concepts, methods, techniques, procedures and standards

associated with software testing
• describe the software testing process and life cycle
• differentiate between the different software testing techniques and

methods
• develop a test plan with the assurance of full coverage, using different

ARA SwE Curriculum Framework 40 Version 0.0

testing techniques
• identify test conditions and design test cases
• implement a test plan to test a software product
• apply the international IEEE testing standard
• discuss the advantages and limitations of existing software testing

tools
• use software metrics to assess the software testing process and

product quality
Module Content The module will include the following topic areas:

• Testing Life-cycle (planning, design, implementation, execution,
analysis, and maintenance)

• Test Documentation (test plan, test case specification, test script, test
case, test log, test incident report, and test library)

• Testing Levels (unit, integration, system)
• Testing Methods and Techniques

! Functional Testing
! Black-box Testing
! White-box Testing
! Acceptance Testing
! Installation Testing
! Stress Testing
! Performance Testing
! Regression Testing

• Test Case Identification and Design
• Requirement Phase Testing
• Design Phase Testing
• Test Metrics

! Test Metrics Fundamentals (collection, computation, analysis and
feedback)

! Test Metrics Classification (effort, evaluation, and execution)
! Test and Defect Tracking

Recommended
Module Format and
Learning Activities

• ten hours of reading/study preparation
• two five day workshops (The first workshop, delivered during one

week, presents the fundamentals, and the second workshop, delivered
one day a week for five weeks, presents advance topics)

• daily format
! Morning – lectures and discussions
! Afternoon – individual and group exercises

• exercises
! Test plan generation
! Test case and testing technique identification
! Test case design
! Requirement testing
! Design testing
! Test and defect tracking
! Test metrics collection and analysis

Required Effort 90 hours

Additional Training • 6 months of supplemental experiential learning involving software
testing

Assessment • Pre and post workshop self-assessment
• Workshop exercise results

Resources • Primary Resources: LR 38, LR 60, LR 61
• Secondary Resources: LR 58, LR 59, LR 62, LR 63

References • 829-1998 IEEE Standard for Software Test Documentation.

ARA SwE Curriculum Framework 41 Version 0.0

• 1465-1998 IEEE Standard adaptation of ISO/IEC 12119-Software
packages-Quality Requirements and Testing.

• 1012-1998 IEEE Standard for Software Verification and Validation.
• 730-1998 IEEE Standard for Software Quality Assurance Plans.
• 1061-1998 IEEE Standard for a Software Quality Metrics

Methodology.
• B. Hetzel, A Complete Guide to Software Testing, QED Information

Sciences, 1984.
• B. Beizer, Software Testing Techniques, Thompson Computer Press,

1982.
• Roper M., Software Testing, McGraw-Hill, 1994.
• W. Perry, Effective Methods for Software Testing, Wiley, 1995.
• Jorgenson, Software Testing, A Craftsman’s Approach, CRC, 1995.

13. Software Maintenance

Module LM 13 Software Maintenance
Related
SwE-BOK
Elements

2.5.1 Software Installation and Operation
2.5.2 Software Maintenance Operation
2.5.3 Software Maintenance Process

Competency Level Execution
Rationale Software maintenance engineers are required to perform all aspects of

software maintenance at the FAA. As a result, the maintenance specialist
must possess mastery level knowledge about software installation and
maintenance, software maintenance operations, and the software
maintenance process.

Prerequisite
Knowledge

Completion of the following modules (or equivalent knowledge):
• LM 1: Basic Software Engineering
• LM 2: Computing Fundamentals
• LM 3: Software Domains
• LM 4: Software Management

Description This module provides an in-depth coverage of software installation and
maintenance. It covers terms, techniques and methods associated with
the maintenance process, maintenance data analysis, and maintenance
operations.

Module Objectives Upon completion of this module the engineer will be able:
• differentiate between different maintenance types
• measure and improve the maintainability of software
• estimate resources and cost of the maintenance
• establish, enforce, and follow a change and version control procedure

Module Content The module will include the following topic areas:
• Software Maintenance Types
• Maintainability Measurement
• Maintenance Management
• Software Maintenance Cost Estimation
• Change Management Procedure
• Configuration Management and Version Control in Maintenance

Recommended
Module Format and
Learning Activities

• five hours of reading/study preparation
• two days workshop
• daily format

! Morning – lectures and discussions
! Afternoon – individual and group exercises

ARA SwE Curriculum Framework 42 Version 0.0

• exercises
! Maintenance case studies

Required Effort 21 hours

Additional Training • 3 months of supplemental experiential learning involving software
maintenance activities

Assessment • Pre and post workshop self-assessment
• Workshop exercise results

Resources • Primary Resources: LR 65, LR 68
• Secondary Resources: LR 64, LR 66, LR 67

References • Schach, S. Software Engineering, Akson Associate, 1990.
• Lientz, B.P., E.B. Swanson, Software Maintenance Management,

Addison-Wesley, 1980.
• Boehm, B.W., The economics of software maintenance, Proc.

Software maintenance workshop, 1983.
• Glass, R.L., R.A. Noiseux, Software Maintenance Guidebook, Prentice

Hall, 1981.
• Martin, J, and G. McClure, Software Maintenance: The Problem and

Its Solution, Prentice Hall, 1983.
• Parikh, G., N. Zvegintzov, Tutorial on Software Maintenance, IEEE

Computer Society, 1983.
• A Review of Software Maintenance Technology, Rome Air

Development Center.

14. Software Acquisition

Module LM 14 Software Acquisition
Related
SwE-BOK
Elements

3.6 Software Acquisition

Competency Level Execution
Rationale A software engineer working in the acquisition area must have explicit

knowledge and experience about acquiring a custom software system
from software developers that are independent of the FAA. This includes
knowledge about acquisition activities such as procurement, contracting,
performance evaluation, and providing for future support of the software
system. Knowledge about the appraisal and acquisition of COTS software,
and its use and integration in software systems is becoming increasing
critical for acquisition engineers.

Prerequisite
Knowledge

Completion of the following modules (or equivalent knowledge):
• LM 1: Basic Software Engineering
• LM 2: Computing Fundamentals
• LM 3: Software Domains
• LM 5: Software Management (Advance)
• LM 6: Product Quality Control
• LM 11: Software Requirements

Description This module provides an in-depth coverage of issues associated with
software acquisition. This module covers the concepts, methods,
processes, procedures, and techniques associated with procurement,
contracting, performance evaluation, software management, and software
quality control.

Module Objectives Upon completion of this module the engineer will be able:
• identify and discuss the different phases of software procurement and

ARA SwE Curriculum Framework 43 Version 0.0

acquisition life cycle
• understand the different acquisition strategies
• familiar with the different negotiation techniques
• understand different software standards, and use them to follow the

progress of contractors
• develop a plan and schedule that need to be met by the contractor,

and assess the contractor performance based on them.
• use different quality control techniques to assess the quality of the

product
Module Content The module will include the following topic areas:

• Acquisition Life Cycle
• System Life Cycle
• Software Life Cycle
• Procurement Process
• Acquisition Strategies

! Competitive acquisition
! Two phase acquisition
! Sole-source acquisition
! Arts and techniques of negotiation
! Cost and price analysis

• Software Management
! Establishing requirements
! Planning
! Schedule and cost control
! Standards identification

• Performance management and assessment techniques
! Validation and verification
! Quality Assurance
! Review, inspection and test
! Metrics

Recommended
Module Format and
Learning Activities

• four hours of reading/study preparation
• three days workshop
• daily format

! Morning – lectures and discussions
! Afternoon – individual and group exercises

• exercises
! Number of acquisition case studies and role playing
! Planning and tracking

Required Effort 28 hours

Additional Training • 3 months of supplemental experiential learning involving software
acquisition activities

Assessment • Pre and post workshop self-assessment
• Workshop exercise results

Resources • Primary Resources: LR 73
• Secondary Resources: LR 69, LR 70, LR 71, LR 72, LR 74

References • Marcinial, .J, and Raifer, D.J., Software Acquisition Management :
Managing the Acquisition of Custom Software Systems, Wiley, 1990.

• Vallabhaneni , S.R., Auditing Purchased Software : Acquisition,
Adaptation, and Installation.

• Glaseman, S., Comparative Studies in Software Acquisition :
Management Organization Versus the Development Process.

• Peter A. Kind, Jack Ferguson, "The Software Acquisition Capability
Maturity Model", Software Engineering Institute, March 1997.

• http://www.stsc.hill.af.mil/CrossTalk/1997/mar/acq_cmm.asp

ARA SwE Curriculum Framework 44 Version 0.0

IV. REFERENCES

1 Hilburn, T.B., Hirmanpour, I., Khajenoori, S., Qasem, A., FAA-ARA Software Engineering
Competency Study: Final Report, December 1998.

2 Hilburn, T.B., Hirmanpour, I., Khajenoori, S., Qasem, A., Turner, R., A Software Engineering
Body of Knowledge, Version 1.0, CMU/SEI-99-TR-004, Software Engineering Institute,
Carnegie Mellon University, April 1999.
http://www.sei.cmu.edu/publications/documents/99.reports/99tr004/99tr004abstract.html

3 Ibrahim, L., et. al., The Federal Aviation Administration Integrated Capability Maturity Model,
Version 1.0, November 1997.

4 FAA, Software Training Proposal: Training for Aircraft Safety engineers involved in approving
software based systems, Revision 0, June 19.,1998.

5 ARA Intellectual Capital Investment Plan, Office of Associate Administrator for Research and
Acquisitions, FAA, 1997.

6 ARA Role Workbook, Office of Associate Administrator for Research and Acquisitions, FAA,
1998.

7 ARA Curriculum Group, FY 1999 Goal, Outcomes, and Deliverables, 1999.

8 FAA Contract, Award No.: DTFA0199P12250, Statement of Work, Phase II, Software
Engineering Competency Study, 1999.

ARA SwE Curriculum Framework 45 Version 0.0

APPENDIX A: LEARNING RESOURCES

ARA SwE Curriculum Framework 46 Version 0.0

LR 1
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3)

• Software Product Engineering (2)

Type of
Instruction:

Seminar

Name of the
Institution:

ICE - Integrated Computer Engineering, Inc., Computers & Concepts Associates
Division

Name of the
Course:

Software Engineering Management

Reference: http://www.candca.com/training.html

Location: All courses are designed as "on-site" training workshops; presented at the client's facility
or local hotel conference room. Prices are based on a minimum of 20 seats. Federal
and Department of Defense customers qualify for our lower GSA/FEDSIM rates.
Training funds can be placed on the GSA/FEDSIM contract and remain there until the
customer charges against it for desired training or other project management services.

Duration: 5 days

Prerequisites: None

Attendees:

In general, anyone involved in software acquisition or development will benefit from
these courses and workshops. The Management Overview workshops are intended
primarily for executives, senior managers and managers who are not software
specialists.

Description: Course Objectives
Software Engineering Management provides system developers with the tools
appropriate to the development and maintenance of software engineering applications
including programming languages, language bindings and object code linking, and
Computer Aided Software Engineering (CASE) environments and tools. This course
details the application of a systematic, disciplined, and quantifiable approach to the
development, operation and maintenance of software. Cultural aspects of software
engineering are covered and are used as the basis for project definition.

Course Outline:
Module 1. Course Introduction and Overview
Module 2. The Context of the Software Project: System Engineering
Module 3. Overview of the Software Engineering Process
Module 4. Planning the Work
Module 5. Software Quality Assurance Management
Module 6. Requirements Engineering and Analysis
Module 7. Software Principal Best Practices Overview
Module 8. Principal Best Practices #1: Formal Risk Management
Module 9. Principal Best Practice #2: Agreement on Interfaces
Module 10. Principle Best Practice #3—Formal Inspections
Module 11. Principle Best Practice #4: Metrics Based Scheduling and Management
Module 12. Principle Best Practice #5: Binary Quality Gates At The Inch Pebble

ARA SwE Curriculum Framework 47 Version 0.0

Level
Module 13. Principle Best Practice #6: Program Wide Visibility of Progress vs. Plan
Module 14. Principle Best Practice #7: Defect Tracking Against Quality Targets
Module 15. Principle Best Practice #8: Configuration Management
Module 16. Principle Best Practice #9: People-Aware Management
Module 17. SEI Assessments
Module 18. Project Assessment and Redirection: Metrics, Assessments and
Managing People
Module 19. Conclusion and Summary
Module 20. Appendix of “Buzzwords”

ARA SwE Curriculum Framework 48 Version 0.0

LR 2
Category of knowledge Area of knowledge Unit of knowledge

• Software Product Engineering (2)

Type of
Instruction:

Seminar

Name of the
Institution:

ICE - Integrated Computer Engineering, Inc., Computers & Concepts Associates
Division

Name of the
Course:

FAA Software Fundamentals Course

Reference: http://www.candca.com/training.html

Location: All courses are designed as "on-site" training workshops; presented at the client's facility
or local hotel conference room. Prices are based on a minimum of 20 seats. Federal
and Department of Defense customers qualify for our lower GSA/FEDSIM rates.
Training funds can be placed on the GSA/FEDSIM contract and remain there until the
customer charges against it for desired training or other project management services.

Duration: 5 days (commercial version also available)

Prerequisites: None

Attendees:

 In general, anyone involved in software acquisition or development will benefit from
these courses and workshops. The Management Overview workshops are intended
primarily for executives, senior managers and managers who are not software
specialists.

Description: Course Objectives
The FAA Software Fundamentals Course teaches the FAA Aerospace Engineers (ASE)
and Aviation Safety Inspectors (ASI) basic software engineering principles in order for
the ASEs and ASIs to carry out their software-related functional responsibilities. The
Engineers and Inspectors must be able to:

a. Define software terms and be able to describe their use in relationship to
the Applicant’s software products and services.

b. Identify the Applicant’s activities in both the systems and software life cycles
and their interrelationship, with emphasis on the software development
process.

c. Describe RTCA/DO-178B guidance as the basis for carrying out FAA
functional responsibilities during the software life cycle.

Course Outline:
− An overview of the system life cycle.
− The software life cycle.

The software development process.

ARA SwE Curriculum Framework 49 Version 0.0

LR 3
Category of knowledge Area of knowledge Unit of knowledge

• Software Product Engineering (2)

Type of
Instruction:

Seminar

Name of the
Institution:

Lattice Limited

Name of the
Course:

Introduction to Software Engineering

Reference: http://www.lattice.co.uk/training/index.html

Location: We typically deliver our courses at customer sites throughout the UK and Europe. We
can also arrange courses for customers here in the UK, in London or in Cambridge.
Lattice is also an experienced provider of tool training. Typically, this service is offered
to tool vendors to provide their prospective users with comprehensive training programs
correctly connected to the underlying software engineering. End-user companies may
also benefit from existing tool courses, or in the development and delivery of specific
tool courses.

Duration: 3 days

Prerequisites: None

Attendees: This course is appropriate for anyone who has some involvement in software
engineering, is interested in raising the quality of software and who suspects that there
are gaps in their knowledge. It will be helpful if participants have read Frederick Brooks'
"Mythical Man-Month" and "No Silver Bullet".

Description: This course aims to bring to the same level of awareness, the diverse range of people
who find themselves developing large and complex software systems, and to cover
some aspects of software engineering which are often not covered during typical
software engineering tertiary education.
Aims:
− To survey the techniques and methods that can bring a significant improvement to

the development of complex software systems
− To bring everyone to a point where they are aware of most of the important

discoveries in software development from the past fifteen years
− To get people to a position where they know what techniques are available, the

effects they will have and any problems that should be anticipated in their use, and
where to go next to take particular techniques to the appropriate depth

− To alert people to any important areas of software engineering that they didn't know
they were unaware of

ARA SwE Curriculum Framework 50 Version 0.0

LR 4
Category of knowledge Area of knowledge Unit of knowledge

• Software Product Engineering (2)

Type of
Instruction:

3.0 Credit Hours Semester Course

Name of the
Institution:

National Technological University

Name of the
Course:

SE 510-C - Software Engineering I

Reference: http://www.ntu.edu/2/secrs.htm

For Academic Questions Contact: Phil Barry (612) 624-8311 FAX (612) 625-0572 E-
mail: barry@cs.umn.edu
For Administrative Questions Contact: Fran Schirmers (612) 624-2332 FAX (612) 626-
0761 E-mail: unite@cs.umn.edu

Location: University of Minnesota

Duration: 30 (75 minute) lectures plus final

Prerequisites: Programming languages and experience of developing 1000-line programs.

Attendees: designers/managers

Description: Advanced introduction to software engineering. Software life cycle; development
models; software requirements analysis; software design, coding, and maintenance.
Course Outline by Topical Areas:
− Software Life Cycle and Development Models, Waterfall, spiral, prototyping,

reusability. Best practices and worst practices, Process modeling and management.
− Software Requirement Analysis, Object-oriented analysis, Analysis activities,

Evaluation criteria, Survey of analysis techniques,
− Software Design, Design architecture, Object-oriented design, Design patterns,

Design rules.
− Software Coding, Coding rules

Software Maintenance, Program slicing, Ripple effect analysis, Data-centered program
understanding, Business rule extraction

ARA SwE Curriculum Framework 51 Version 0.0

LR 5
Category of knowledge Area of knowledge Unit of knowledge

• Software Product Engineering (2)

Type of
Instruction:

Seminar

Name of the
Institution:

National Technological University

Name of the
Course:

Principles of Software Requirements Engineering

Reference: http://www.ntu.edu/1/atmp/1999Courses/mc99050402.htm

Location: One live

Duration: 3-hour broadcast

Prerequisites: Software development or management familiarity

Attendees: This course is intended for software managers, project leaders, programmers and
software engineers who are interested in structured and object- oriented approaches to
software development. For those already familiar with basics of requirements
engineering, this course will serve as a refresher. For those with little or no knowledge
of requirements engineering, this course will provide a starting point, familiarizing you
with concepts, methods, and approaches to requirements analysis and specification.

Description: Large-scale software systems cannot successfully be developed without a complete
understanding and representation of the system's requirements. Requirements
engineering helps discovery, refinement, modeling and specification of all functional
and non-functional elements of a system. A complete analysis/specification leads to
high-quality software design and implementation, more reliable and maintainable
software components and a reduction of development and maintenance costs of

the software system over its life cycle. In this 3-hour course, we will introduce basic
concepts and principles of software requirements engineering, its tools and techniques,
and familiarize participants with the most common methods for modeling software
systems. Both function-based and object-based approaches to system analysis and
specifications will be discussed.

ARA SwE Curriculum Framework 52 Version 0.0

LR 6
Category of knowledge Area of knowledge Unit of knowledge

• Computing Fundamentals (1) • Computer Architecture
(1.2)

Type of
Instruction:

E-book

Name of the
Institution:

Computational Science Education Project

Name of the
Course:

Computer Architecture

Reference: http://csep1.phy.ornl.gov/CSEP/CA/CA.html

Location: On line

Duration:

Prerequisites:

Attendees:

Description: − Overview
− Basic Computer Architecture
− High Performance Computer Architecture
− Exercises

References

ARA SwE Curriculum Framework 53 Version 0.0

LR 7
Category of knowledge Area of knowledge Unit of knowledge

• Computing Fundamentals (1) • Programming
Language (1.5)

• Programming Paradigms
(1.5.2)

Type of
Instruction:

Course

Name of the
Institution:

National Capital Training Center

Name of the
Course:

BCOMP719 Structured Programming Techniques

Reference: http://grad.usda.gov/cat/page30.html

Location: 600 Maryland Avenue SW, Suite 280
Washington, DC 20024-2520
Phone: (202) 314-3400
FAX: (202) 479-6810
TDD: (202) 314-3450
TOLL-FREE: (888) 744-GRAD

Duration: 3-day

Prerequisites:

Attendees: Participants should have taken Basic Concepts of Data Processing or have equivalent
work experience.

Description: Programming regardless of the language requires a special kind of logical thought
process, and a knowledge of programming terminology.
This three-day course is designed to provide a basis for specific programming language
courses. It emphasizes problem definition and description, program definition, logic
and flowcharting. It will review systems software, survey job control language, and
examine the use of symbolic and problem-oriented language, and program
documentation.

Objectives:
Upon completion of this course participants will:
− develop the skills necessary to state with precision the steps to follow in problem

solving
− learn to apply the rules and requirements of structured programming
− become familiar with basic concepts and terminology of programming (loops,

assignment statements, identifiers, etc.)
− learn to use structured flowcharts, pseudo codes and structured design charts
− become aware of various programming languages currently available and their

applications
− be able to communicate effectively with programmers

ARA SwE Curriculum Framework 54 Version 0.0

LR 8
Category of knowledge Area of knowledge Unit of knowledge

• Computing Fundamentals (1) • Programming
Language (1.5)

• Programming Paradigms
(1.5.2)

Type of
Instruction:

Course

Name of the
Institution:

Graduate School, USDA. The Government’s Trainer

Name of the
Course:

BCOMP968 Overview of Object-Oriented Technology

Reference: http://grad.usda.gov/cat/page54b.html

Location: Denver
12345 W. Almeda Pkwy
Suite 303
Lakewood, CO 80228
(800) 787-9074 / (303) 969-5807
Fax (202) 479-4975
e-mail: appliedtech@grad.usda.gov

Duration: 1-day course

Prerequisites:

Attendees: Computer systems analysts, programmers, managers, and individuals who are
interested in understanding OO concepts and techniques and how they may work in
their organization.

Description: Object oriented technology (OT) is an integrating technology for client server, complex
systems, CASE, multimedia, distributed computing, work flow computing, web and other
information technology areas. Object technology applies to all phases of software
development including requirements, analysis, design, and implementation as well as
enterprise analysis, information engineering and business reengineering. OT represents
a major paradigm shift from traditional system development approaches and
emphasizes the encapsulation of both the data and behavior aspects of objects in the
system.
This overview course covers the major concepts and components of object technology
in the context of the SDLC (system/software development life cycle.) It also covers the
role of standards and, in particular, the role of the new standard Unified Modeling
Language (UML). The course also presents architectures and the use of pattens in
represent models of systems. In addition, the course covers implementation issues for
OO programming languages and object date management systems (ODMSs) and their

relationships to older traditional methods. Management issues regarding reuse, the
transitioning to object technology and object project management are discussed
throughout the course.

ARA SwE Curriculum Framework 55 Version 0.0

LR 9
Category of knowledge Area of knowledge Unit of knowledge

• Computing Fundamentals (1) • Computer Architecture (1.2)

• Operating Systems (1.4)

Type of
Instruction:

Streaming Video Course

Name of the
Institution:

College of Engineering
University of Texas at Arlington, PO Box 19019, Arlington, TX 76019

Name of the
Course:

CSE 3322 Computer Architecture I

Reference: http://engineering.uta.edu/html/vidcourses.html

Location: On line

Duration:

Prerequisites: Digital logic design, basics of: operating systems, computer organization, processor
architecture, hardwired, and micro-programmed control unit.

Attendees:

Description: Hardware and software structures found in modern digital computers. Topics include
instruction set architecture, processor architecture, memory architecture, input/output
architecture, inter-connection schemes, and memory management.

Emphasis is placed on the hardware and software interfaces within a computer system.

ARA SwE Curriculum Framework 56 Version 0.0

LR 10
Category of knowledge Area of knowledge Unit of knowledge

• Computing Fundamentals (1) • Mathematical
Foundations (1.3)

• Discrete Mathematical
Structures (1.3.2)

Type of
Instruction:

Streaming Video Course

Name of the
Institution:

College of Engineering
University of Texas at Arlington, PO Box 19019, Arlington, TX 76019

Name of the
Course:

CSE 2315 Discrete Structures

Reference: http://engineering.uta.edu/html/cse2315.html

Location: On line

Duration:

Prerequisites: CSE 1320 and Calculus I; programming skills in Pascal and/or C.

Attendees:

Description:
This course augments the student's theoretical foundation of Computer Science in the
subject areas of formal logic, mathematical proof techniques, sets, combinatorics,
functions and relations, Boolean algebra, graphs, and graph algorithms.

ARA SwE Curriculum Framework 57 Version 0.0

LR 11
Category of knowledge Area of knowledge Unit of knowledge

• Computing Fundamentals (1) • Algorithms and Data
Structures (1.1)

• Design of Algorithms (1.1.2)

• Analysis of Algorithms (1.1.3)

Type of
Instruction:

Streaming Video Course

Name of the
Institution:

College of Engineering
University of Texas at Arlington, PO Box 19019, Arlington, TX 76019

Name of the
Course:

CSE 5311Design and Analysis of Algorithms

Reference: http://engineering.uta.edu/html/cse2315.html

Location: On line

Duration:

Prerequisites: Algorithms and Data Structures (CSE 2320) and Theoretical Concepts in Computer
Science and Engineering (CSE 3315).

Attendees:

Description: Techniques for analyzing upper bounds for algorithms and lower bounds for problems.
Problem areas include: sorting, data structures, graphs, dynamic programming,
combinatorial algorithms, organization of numerical computations, introduction to
parallel models.

ARA SwE Curriculum Framework 58 Version 0.0

LR 12
Category of knowledge Area of knowledge Unit of knowledge

• Computing Fundamentals (1) • Algorithms and Data
Structures (1.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Advanced Strategies, Inc.

Name of the
Course:

Data Modeling - Practitioners

Reference: http://www.advancedstrategiesinc.com/courses/c12.htm

Location: 3980 Dekalb Technology Parkway in Atlanta, Ga.

Duration:

Prerequisites: Business Object Modeling

Attendees: This course is targeted for database designers and individuals responsible for
designing/coding application software to access data.

Description: This course presents the evolution from the object model (E/R diagram) to the physical
data model (relational tables). Three models are used to manage this complex process:
the conceptual data model, the logical data model, and the physical data model. The
constraints at each stage and the design trade- offs involved are presented. The
conceptual and logical data models are documented using the data structure diagram.
 The student shall gain the skills necessary to construct high quality data structure
designs in his/her actual work setting.

Course Outline:
− Data Design in the System Development Life Cycle
− Data Structure Diagramming
− Logical Record Linkage and Dependency
− Database Navigation
− Performance Optimization vs. Flexibility
− Data Structure Adjustment
− Transaction Analysis SM
− Implementation Data Dependencies:
− DBMS Data Dependencies:

Note:

In special situations, this course can be segmented into modules as follows: Data
Modeling Overview, Solid, and Advanced Classes. Please talk with your Advanced
Strategies Education Advisor for details.

ARA SwE Curriculum Framework 59 Version 0.0

LR 13
Category of knowledge Area of knowledge Unit of knowledge

• Computing Fundamentals (1) • Algorithms and Data
Structures (1.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Advanced Strategies, Inc.

Name of the
Course:

Data Modeling - Solid

Reference: http://www.advancedstrategiesinc.com/courses/c13.htm

Location: 3980 Dekalb Technology Parkway in Atlanta, Ga.

Duration: Four Days

Prerequisites: Object Modeling Solid

Attendees: Database Designers, Data Architects, and Analysts

Description: At the end of this workshop, participants will gain the skills necessary, independently, to
construct high quality logical data specifications using data structure diagrams in their
actual work settings. Specifically, the student will be able to take the object models
produced in Business Object Modeling Basic and Solid courses, transforming them into
logical data models which support physical relational database design.

Course Outline:
− Data Design in the System Development Life Cycle
− Database Navigation
− Performance Optimization vs. Flexibility
− Data Structure Adjustment
− Transaction Analysis
Awareness of Implementation Dependencies:

− Current Business Policies
− Planned Data Redundancy
− Derivable Data
− Security and Audit Requirements

Awareness of DBMS Data Dependencies:
− Indexing Decisions
− Backup, Recovery, Journaling
− The Relational Model

Awareness of Normalization

ARA SwE Curriculum Framework 60 Version 0.0

LR 14
Category of knowledge Area of knowledge Unit of knowledge

• Computing Fundamentals (1) • Computer Architecture
(1.2)

Type of
Instruction:

Workshop

Name of the
Institution:

ISCA 2000 Sponsored by ACM SIGARCH and IEEE Computer Society TCCA

Name of the
Course:

The 27th Annual International Symposium on COMPUTER ARCHITECTURE

Reference: http://www.cs.rochester.edu/~ISCA2k

Location: Vancouver, British Columbia, Canada June 12-14, 2000

Duration: 2 days

Prerequisites:

Attendees:

Description: − Innovative microarchitecture and implementation techniques
− Multiprocessors, multicomputers, and distributed architectures
− Novel architectures and computing techniques
− Architectural implications of application characteristics
− Application-specific or special purpose architectures
− Performance evaluation and measurement of real systems
− Memory hierarchy and I/O system architecture
− Impact of technology on architecture

ARA SwE Curriculum Framework 61 Version 0.0

LR 15
Category of knowledge Area of knowledge Unit of knowledge

• Operating Systems and
Networks (1)

• Computer Architecture
(1.2)

• Communications and
Networks (1.2.4)

Type of
Instruction:

Seminar

Name of the
Institution:

TNN – The Network Network

Name of the
Course:

Understanding Data Communications

Reference: http://www.thenetworknetwork.com/training/

Location: Many cities available: go to the site to find the schedule (Irvine, Chicago, San
Francisco, Sydney, Wellington, Auckland)

Duration: 2 days

Prerequisites:

Attendees: − Computer and communications personnel who have had little formal exposure to
data communications and wish to be brought rapidly up-to-speed

− Technical staff starting out in their information networking education program
− Management personnel who need an understanding of networking and

internetworking in order to guide developments within their own organization
− Experienced data communications personnel who wish to update and round out

their knowledge and gain new insights into current and emerging methodologies
− All non-technical personnel who need to cut through the fog of business networking

Description: Understand the fundamental concepts and principles of data communications and
Networking Essentials. Including:
− Network Components / Real-World Networks / Building a LAN / Configuring The

Server / Configuring the Client / Administering Your Network / Remote Access /
− Wide Area Networks / Troubleshooting and Managememt
− Understand the major features of the OSI 7-layer model and defacto standards such

as SNA, TCP/IP, DECnet, IPX, and how the two can be integrated to maintain
flexibility for the future

− Gain a good understanding of currently available data communications services,
both national and international.

− Find out the importance, and the pros and cons, of various cabling systems,
including coax, twisted pair, fiber optic, wireless, and the flexibility offered by
Dedicated Switched Ethernet

− Learn all about the major protocols (Ethernet, Token Ring, FDDI, TCP/IP, MANs,
WANs) and how they can be linked to form an integrated network Internet, Intranet ,
and Extranet design guidelines

− Applications and business solutions
− Learn all about future developments and directions. Find out which technologies are

likely to become obsolete before you invest in them

ARA SwE Curriculum Framework 62 Version 0.0

LR 16
Category of knowledge Area of knowledge Unit of knowledge

• Software Domains (4) • Real-Time Systems (4.6)

Type of
Instruction:

Distance Learning

Name of the
Institution:

Carnegie Mellon University

Name of the
Course:

Introduction to Real-Time Software Systems

Reference: http://www.distance.cmu.edu/info/courses/real.html

Location:

Duration:

Prerequisites: − Proficiency in at least one high-level programming language used to develop real-
time

− software (e.g., C, C++, or Ada).
− Proficiency in a software design notation.
− Knowledge of operating system concepts taught in an undergraduate operating

system course.

A student may acquire the prerequisite knowledge via an undergraduate course, on-the-
job training, or an independent study.

Attendees:

Description: The primary purpose of this course is to present an overview of real-time software

engineering. The course focuses on basic concepts, terminology, and problems of real-
time applications. You will learn about constraints which distinguish real-time
applications from other applications. Though the course focuses on software solutions
to real-time problems, there will be a discussion of hardware components commonly
used in real-time computing systems as well as hardware/software interfaces. Software
issues which will be addressed include specification of system/software requirements
and design, scheduling, software architectures for real-time software systems,
languages and operating systems for real-time computing, and real-time problems in a
distributed processing system.

ARA SwE Curriculum Framework 63 Version 0.0

LR 17
Category of knowledge Area of knowledge Unit of knowledge

• Software Domains (4) • Real-Time Systems
(4.6)

Type of
Instruction:

Seminar

Name of the
Institution:

Software Arts & Sciences

Name of the
Course:

Schedulability Analysis for Hard Real-Time Systems

Reference: http://www.classwide.com/training/schedula.htm

Box 891591 Houston, Texas, USA 77289-1591
Telephone (281)648-3165
FAX (281)648-3165
General Information: info@classwide.com

Location: On site

Duration: 1 day minimum, 2 days with POSIX or Ada 95 support material and laboratory exercises

Prerequisites: No programming experience is required. However, professional programmers with
previous real-time experience in a high-level language will benefit most from this
seminar.

Attendees:

Description: This detailed, language-independent seminar explores the approaches available for
guaranteeing deadlines in hard real-time systems. The seminar begins with an
examination of the traditional cyclic executive, providing the rationale for modern
process-oriented approaches. The foundation for process-oriented designs is then
provided, including simple priority-based preemptive scheduling and why it is
inadequate alone. Upon this foundation, the concept of deadline scheduling is
introduced as a deterministic scheduling approach able to guarantee deadlines will be
met. The techniques of deadline scheduling are then presented in detail, beginning
with scheduling purely periodic process sets. Emphasis is given to schedulability
analysis such that deadline viability can be determined prior to execution. As such, Rate
Monotonic Analysis (RMA) is covered extensively, as are the more recent advances for
analyzing schedulability than the RMA Utilization test. Discussion of the complexities
introduced by including aperiodic and sporadic (event-driven) processes leads to the
use of Deadline Monotonic Analysis as an alternative to RMA. Finally, processes that
block for synchronization and communication – representing realistic applications – are
added to the schedulable process set. The additional techniques for schedulability
analysis are thus explored, including priority inheritance as a means of dealing
with unbounded priority inversions, and protocols to increase the effectiveness of priority
inheritance. The presentation closes with practical suggestions for further reading.
Laboratory work is included to reinforce the material presented.

Outline
 1.Introduction

ARA SwE Curriculum Framework 64 Version 0.0

 1.Requirement for Real-Time Systems
 2.Hard Deadlines
 3.Soft Deadlines
 2.Cyclic Executives
 1.Advantages
 2.Risks
 3.Process-Based Designs
 1.Advantages and Risks
 2.Periodic, Aperiodic and Sporadic Processes
 3.Priority-Based Schedulers
 4.Preference Scheduling
 1.Semantic Importance
 2.Inadequacies
 5.Deadline Scheduling
 1.Deadline Mapping
 2.Schedulability Analysis
 3.Optimal Scheduling Schemes
 4.Schedulable Processes Sets
 6.Scheduling Periodic Processes
 1.Rate Monotonic Analysis
 2.Analysis via Timelines
 3.Utilization Test
 4.Response Time Test
 5.Transient Overloads
 7.Including Aperiodic & Sporadic Processes
 1.Bandwidth-Preserving Algorithms
 2.Deadline Monotonic Analysis
 8.Including Blocking Processes
 1.Blocking
 2.Priority Inversion
 3.Priority Inheritance
 4.Ceiling Priority Protocol
 5.Original Ceiling Priority Protocol
 6.Immediate Ceiling Priority Protocol
 9.Including System Overheads
 1.Context Switches
 2.Interrupt-Driven Sporadic Processes
 3.Real-Time Clock Interrupt Handling
 10.Case Study
 11.Concluding Remarks
 12.Recommended Reading

ARA SwE Curriculum Framework 65 Version 0.0

LR 18
Category of knowledge Area of knowledge Unit of knowledge

• Software Domains (4) • Human-Computer
Interaction (4.3)

Type of
Instruction:

NTU Semester Credit Hours: 3

Name of the
Institution:

National Technological University

Name of the
Course:

SE 735-N User Interface Design

Reference: http://www.ntu.edu/1/credit/se735n.htm

Location: Department of Computer Science and Engineering
Southern Methodist University
P.O. Box 750122
Dallas, TX 75275
(214) 768-3080 (972) 497-4033 FAX (214) 768-3085 E-mail: mdiaz@rsn.hp.com

Duration: 15 (180 minute) lectures

Prerequisites: None. Programming is not required. Some experience using a graphical user interface
application (e.g. Windows, Macintosh, X Windows) would be useful.

Attendees:

Description: The course will discuss both the interface itself and, more importantly, the
process by which one is developed. Though a brief overview is presented, the course is
not about the psychology of human factor aspects of interface design. Rather, the
course is geared towards the software-engineering aspects of development.
Course Outline:
− User Interface Guidelines
− Interface Styles and Widgets
− Human Factors Considerations
− Iterative Development
− Systems Analysis
− Quantifying Usability
− User Interface Representation
− Rapid Prototyping/Visual Basic
− Usability Testing

ARA SwE Curriculum Framework 66 Version 0.0

LR 19
Category of knowledge Area of knowledge Unit of knowledge

• Software Domains (4) • Human-Computer Interaction
(4.3)

Type of
Instruction:

Seminar

Name of the
Institution:

National Technological University

Name of the
Course:

Web Development with HTML
Course Code: MC99062401

Reference: http://www.ntu.edu/1/atmp/1999Courses/mc99062401.htm

Location: One live

Duration: 6-hour broadcast

Prerequisites: A working knowledge of your operating system and experience with browsing the World
Wide Web

Attendees: Anyone interested in creating great-looking, platform-independent documents for the
World Wide Web

Description: HTML is the glue that holds together the massively-expanding phenomena known as
the World Wide Web. At the core of all Web development is the knowledge of Hypertext
Markup Language (HTML) and the proper style of its use. This course is a fundamental
from-the-ground-up approach to understanding the core HTML 3.2 language, as well as
an overview of some of the current "extension tags" that exist for certain browsers.
Topics covered will include format- and context-oriented tags, formatting text, in-line
images, tables, frames, forms, and more.

ARA SwE Curriculum Framework 67 Version 0.0

LR 20
Category of knowledge Area of knowledge Unit of knowledge

• Software Domains (4) • Real-Time Systems (4.6)

Type of
Instruction:

Seminar

Name of the
Institution:

University Consortium for Continuing Education

Name of the
Course:

Real Time Software Design

Reference: http://www.ucce.edu/onsites/css.html

Location: On site
UCCE specializes in providing on-site courses in engineering and management in a
technical environment. UCCE has a vast array of quality short courses available to be
offered at your facility and may be scheduled at your convenience. For additional
information including detailed brochures on individual courses or a proposal to offer a
course at your facility, contact Tom Mincer for On-Site Proposals & Information or call
(818) 995-6335.

Duration:

Prerequisites:

Attendees:

Description: Software specification and design techniques developed for traditional applications
typically are inadequate when they are applied to real time systems. This five-day
tutorial identifies the issues unique to real time systems, describes mathematical models
needed to resolve these issues, and then describes a variety of real-time notations and
techniques.
The special role of requirements specification in traditional and emerging models of the
software development life cycle what information should be present in a requirements
specification the mathematical complexity of real-time applications the capabilities and
limitations of traditional requirements specification techniques the mainline real-time
specification methods

ARA SwE Curriculum Framework 68 Version 0.0

LR 21
Category of knowledge Area of knowledge Unit of knowledge

• Software Domains (4) • Human-Computer Interaction
(4.3)

Type of
Instruction:

Computer Based Instruction

Name of the
Institution:

National Program Office for Computer Based Instruction

Name of the
Course:

GUI Design Fundamentals

Reference: http://faawbt.jccbi.gov/cbtlib/htmlplan/cbtweb/curicula/courses/ADPG01E/ADPG01E.htm

Location: On line

Duration: 4 hours

Prerequisites: An understanding of basic windows and Web terminology; visual programming
experience and HTML or previous Web design experience an advantage

Attendees: Those involved with designing or implementing graphical user interfaces (GUIs),
including software project managers, programmers, analysts and designers, software
engineers, and technical writers

Description: Course Aim:
To teach the principles of effective GUI design for windows-based applications

Topics Covered
− GUI design principles
− Usable GUIs
− Design principles
− Images, icons, and color
− User requirements
− GUI controls
− Window design principles
− Usability

Learning Objectives
− After taking this course, the student should be able to describe the principles of

graphical user interface design
− differentiate between effective and ineffective interfaces
− list and describe key attributes of windows
− develop effective navigation through the interface
− know when to choose color, graphics, audio, and animation, and when not to

ARA SwE Curriculum Framework 69 Version 0.0

LR 22
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Project
Management (3.1)

• Software Risk Management
(3.2)

• Software Process
Management (3.5)

Type of
Instruction:

Computer Based Instruction

Name of the
Institution:

National Program Office for Computer Based Instruction

Name of the
Course:

Project Management: Fundamentals

Reference: http://faawbt.jccbi.gov/cbtlib/htmlplan/cbtweb/curicula/courses/PROJ01E/PROJ01E.htm

Location: On line

Duration: 3 hours

Prerequisites: A basic understanding of the need for project management and an interest in the
principles of effective project management.

Attendees: Students interested in the principles of project management; trainee project managers;
consultants routinely engaged in project management; experienced project managers
wishing to refresh their thinking on the principles of project management; program
managers and senior managers employing or managing project managers

Description: To provide an introduction to the principles of project management :
Roles and responsibilities
− Projects and programs
− The project manager
− Functional managers
Project team members
− Project variables
− Scope
− Scheduling activities
− Risk
− Quality
− Resources
Project processes
− Planning
− Controlling
− Reporting
− Concluding
Information Store
− Site-level Information Store configuration
Public and private information stores
−

ARA SwE Curriculum Framework 70 Version 0.0

LR 23
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Configuration
Management (3.4)

Type of
Instruction:

Seminar

Name of the
Institution:

Software Productivity Center

Name of the
Course:

Software Configuration Management

Reference: http://www.spc.ca/training/courses/index.htm

Location: BCIT Downtown Campus, 555 Seymour St.,
Vancouver, BC

Duration:

Prerequisites:

Attendees: Software engineers, team leaders, programmers and technically-oriented software
product managers and information systems managers.

Description: Course Overview
Producing high-quality software is crucial. Vice presidents of software development
firms have stated that the most significant effect in their process improvement activities
has often been the start-up of a good configuration management (CM) organization
and process. Participants will acquire a solid understanding of the CM methods
considered essential to achieving high levels of software quality. They will learn how to
implement these methods in their companies and projects.
This course presents many tips and techniques from leading companies that view CM
as the norm. Participants will learn how important CM is in terms of creating successful
software, and in terms of compliance with the ISO 9000 standard. Participants will learn
the CM practices required to control software products through their life cycle from initial
creation through construction, to testing, to delivery and maintenance.

Topics
− software product management
− configuration control principles
− change request process and information
− configuration identification
− delta-storage concepts
− organizing for configuration management
− determining configuration management requirements
− software configuration management plan
− making configuration management happen

ARA SwE Curriculum Framework 71 Version 0.0

LR 24
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Management (3)

Type of
Instruction:

Seminar

Name of the
Institution:

DACS

Name of the
Course:

System Engineering

Reference: http://www.dacs.dtic.mil/training/sysed.shtml

Location: ITT SystemsCorporation
2560 Huntington Ave.
Alexandria, Virginia 22303
(703) 960-4906
On-Site options are also available. Call the DACS Customer Liaison for details.

Duration:

Prerequisites:

Attendees: The course is designed for professionals involved in systems management and
development either in a direct engineering role or oversight management role. It would
be extremely useful as a familiarization course. Thus, the course is intended for those
persons that have little knowledge of system engineering, to those that have knowledge
in distinct areas or wish to update on recent events.

Description: The seminar will provide an understanding of System Engineering as it is practiced in
the DoD and associated government agencies. It will cover basic concepts of System
Engineering to include: definitions, standards used, new developments in the area, and
related topics in areas such as Corporate Information Management (CIM) and Business
Process Reengineering (BPR). Exercises will be used to enhance the training.
Attendees can expect to acquire enough insight into this topic to be able to apply the
concepts contained herein.
Course Outline :
− System Engineering Overview
− Requirements Engineering
− Software Development
− System Architecture
− Risk Management
− Performance Measurement and Evaluation
− Life-Cycle Acquisition
− Life-Cycle Costing
− Support and Specialty Engineering
− System Software Engineering Tools

ARA SwE Curriculum Framework 72 Version 0.0

LR 25
Category of knowledge Area of knowledge Unit of knowledge

Software Management (3)

Type of
Instruction:

Seminar

Name of the
Institution:

DACS

Name of the
Course:

Software Engineering for Program Managers

Reference: http://www.dacs.dtic.mil/training/seng4pro.shtml

Location: ITT SystemsCorporation
2560 Huntington Ave.
Alexandria, Virginia 22303
(703) 960-4906
On-Site options are also available. Call the DACS Customer Liaison for details.

Duration:

Prerequisites:

Attendees: The course is designed for professionals involved in software engineering or program
management. One of the main course objectives is to improve understanding between
program managers and software engineers therefor both will benefit from this course.

Description: This course will highlight the following areas:
− Program Management and Software Engineering
− Software Process Maturity
− Life Cycle Management
− Software Project Management
− Software Risk Management

ARA SwE Curriculum Framework 73 Version 0.0

LR 26
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3)

Type of
Instruction:

Seminar

Name of the
Institution:

Oregon Graduate Institute of Science and Technology
Center for Professional Development

Name of the
Course:

Estimating, Measuring, and Controlling Software Projects

Reference: http://www.ogi.edu/CPD/courses/

Location: 20000 N.W. Walker Road
Beaverton, Oregon 97006-8921
Fax: +1-503-748-1686.

Duration: 2 days

Prerequisites: No special background is required. Those with more experience and knowledge of
software engineering and software management benefit most from this course. It is
recommended, but not required, that attendees complete the short course Planning and
Estimating Software Projects before attending this course.

Attendees: Project managers, software acquirers, software developers, quality engineers, systems
engineers, division managers and all others who are concerned with developing
satisfactory software products and software components within the constraints of
schedule, budget and available resources will benefit from this course.

Description: This two-day course presents methods, tools, and techniques for estimating effort,
schedule, resources requirements, and risk factors as determined by required product
features and quality attributes; techniques for measuring schedule progress, resource
utilization, product features and quality attributes attained; process effectiveness; and
risk indicators. In addition, methods for measuring and controlling each project factor
and the interactions among project factors will be presented. Methods for estimating
cost and schedule to complete an on-going project will be described, and techniques for
making tradeoffs among schedule, budget, resources, product attributes, and risk
factors will be presented.

Course Outline
1. The nature of project management
2. Software project foundation elements
3. Risk management procedures
4. Selecting a software development model
5. Planning the big three: effort, schedule, and resources
6. Systematic estimation techniques
7. Planning the supporting processes
8. Planning for measurement and control

ARA SwE Curriculum Framework 74 Version 0.0

LR 27
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Quality
Management (3.3)

• Software Metrics (3.3.3)

Type of
Instruction:

Seminar

Name of the
Institution:

DACS

Name of the
Course:

Software Measurement: Implementation and Practice

Reference: http://www.dacs.dtic.mil/training/soft.meas.shtml

Location: ITT SystemsBuilding
2560 Huntington Avenue
Alexandria, Virginia 22303 USA
(703) 960-4906
The office is located one block from the Huntington Metro stop (yellow line); parking is
available at the Kaman building.
On-Site options are also available. Call the DACS Customer Liaison for details.

Duration: ?

Prerequisites:

Attendees: This course is designed for the software professional involved in project management,
oversight for software intensive projects, software acquisition management, or software
development and engineering who has experience with software and software
development but is not familiar with measurement or measurement practice.

Description: Software Measurement Implementation and Practice will highlight the following areas:
Measurement and Metrics; Measurement Paradigms; and the Experience Factory. This
seminar will provide a basic understanding of measurement methods and problems,
discuss the practical aspects of metric collection, give examples of metrics and
management indicators, discuss measurement initiatives underway throughout the
world, develop an understanding of measurement techniques that are utilized in
practice, discuss new paradigms for measurement, and explain the concept of an
Experience Factory. Attendees will acquire solid knowledge of what measurement is,
how to implement it, and how to use it in software engineering practice. In addition, the
seminar will provide attendees with new techniques for implementing measurement in a
process-based reuse environment.
− History of Software Measurement
− Metrics (McCabe's Cyclomatic Complexity) and Management Indicators
− Data and Metric Collection Methods
− Using Measurement in Software Engineering Practice
− Measurement Paradigms Software Quality Framework, Goal / Question / Metric,

Gilb's metrics, etc.
− The Experience Factory
− Data Repositories
− Measurement Experiments

ARA SwE Curriculum Framework 75 Version 0.0

LR 28
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Risk Management
(3.2)

• Risk Analysis (3.3.1)

Type of
Instruction:

Course

Name of the
Institution:

American Society for Quality

Name of the
Course:

Risk Analysis Tools Techniques

Reference: http://www.asq.org/products/courses/fall/engistat.html#eng10

Location: Newark, NJ October 19-21, 1999 Course # 99235

ASQ’s Customer Service Center:
American Society for Quality, 611 East Wisconsin Avenue,
P.O. Box 3005, Milwaukee, WI 53201-3005
Tel: 1- 800-248-1946 or 414-272-8575,
fax 414-272-1734,
e-mail: cs@asq.org

Duration: 3 Days

Prerequisites:

Attendees: Project team managers, design engineers, production engineers, development staff,
quality assurance and regulatory affairs specialists, market researchers, and senior
sales representatives.

Description: Benefits: Know how to organize efforts to improve product safety and reliability. Get a
road map for “before-the-event” activities that address risk. Appreciate how risk analysis
can reduce start-up costs and time to market. Understand how risk analysis fosters
teamwork and communication. Be ready to comply with regulatory (ISO, FDA, etc.)
requirements.
Highlights:
− Know how to apply risk analysis as a product or process life cycle activity
− Learn when and where to apply different risk analysis tools and techniques
− Be able to apply three major risk analysis techniques: Preliminary hazard analysis,

Fault tree analysis, Failure mode & effects analysis
− Know how to document risk analysis activities as a living process
− Understand organizational dynamics when conducting a risk analysis
− Work with actual industry case studies

ARA SwE Curriculum Framework 76 Version 0.0

LR 29
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3)
• Software Quality

Management (3.3)
• Software Configuration

Management (3.4)

• Software Quality Assurance
(3.3.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Computer Generated Solutions - Instructor Led Technical Training

Name of the
Course:

Software Quality Assurance Techniques

Reference: http://devel.netxactics.com/cgsinc/_training/ilt/q233.htm

Location: Computer Generated Solutions, Inc. (World Headquarters)
1675 Broadway, New York, N.Y. 10019
Tel: (212) 408-3800 • Fax: (212) 977-7474

Duration: 4 Days

Prerequisites: None

Attendees: Anyone responsible for improving quality of software products

Description: This course teaches the participant how to apply techniques known to improve software
quality. As the process of developing computer programs has matured, an ever-
widening range of applications has been produced. Consequently the user base has
expanded, and user expectations have risen, with particular emphasis on improvement
of program quality. Software requirements specifications, however, have usually lacked
precise definitions of software quality, and many organizations do not identify specific
software quality assurance responsibilities.
− The software development process
− Software quality assurance planning
− Software configuration management
− Quality measurement, analysis and corrective action
− Reviews, audits and inspections
− Tools, techniques and methodologies
− Software development tools
− Software development
− Implementing a software quality improvement program

ARA SwE Curriculum Framework 77 Version 0.0

LR 30
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3)
• Software Product

Management (3.1)
• Software Quality

Management (3.3)
• Software Configuration

Management (3.4)

• Software Quality Assurance
(3.3.1)

• Software Verification
&Validation (3.3.2)

Type of
Instruction:

Course

Name of the
Institution:

American Society for Quality

Name of the
Course:

Software Quality Engineering

Reference: http://www.asq.org/products/courses/fall/softeng.html#soft4

Location: Nashville, TN July 12-16, 1999, Course # 99189
Milwaukee, WI November 1-5, 1999, Course # 99247

ASQ’s Customer Service Center:
American Society for Quality, 611 East Wisconsin Avenue,
P.O. Box 3005, Milwaukee, WI 53201-3005
Tel: 1- 800-248-1946 or 414-272-8575,
fax 414-272-1734, e-mail: cs@asq.org

Duration: 4 Days

Prerequisites: Knowledge of and/or work experience within the software quality assurance field is
helpful.

Attendees: Software quality specialists, software quality engineers, software process engineers,
and quality engineers wishing to obtain a basic understanding of software quality
engineering practices and principles.

Description: This course explores the Body of Knowledge for ASQ’s Software Quality Engineer
certification program. Comprehensive overview of the skills and knowledge necessary to
perform software quality engineering tasks:
− Understand the software life cycle
− Determine how to evaluate software quality activities and processes and determine

whether or not they meet their intended purpose
− Software TQM
− Software life cycle
− Project management
− Software configuration management
− Software audits, reviews, and inspections
− Software metrics and other issues
− Complimentary copy of ANSI/ISO/ASQC Q9000-3-1997

ARA SwE Curriculum Framework 78 Version 0.0

LR 31
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Quality
Management (3.3)

• Software Metrics (3.3.3)

Type of
Instruction:

Course

Name of the
Institution:

American Society for Quality

Name of the
Course:

Software Metrics

Reference: http://www.asq.org/products/courses/fall/softeng.html#soft3

Location: Milwaukee, WI August 10-11, 1999 Course # 99201
Boston, MA October 7-8, 1999 Course # 99184C

ASQ’s Customer Service Center:
American Society for Quality, 611 East Wisconsin Avenue,
P.O. Box 3005, Milwaukee, WI 53201-3005
Tel: 1- 800-248-1946 or 414-272-8575,
fax 414-272-1734,
e-mail: cs@asq.org

Duration: 2 Days

Prerequisites:

Attendees: Software quality engineers, software process engineers, software quality specialists,
quality engineers

Description: Benefits:
− List the metrics Do's and Don'ts
− Identify relevant industry initiatives
− Define and implement a measurement program
− Identify what to measure
− Interpret and communicate the results
− Create a corrective action path
Highlights
− Examine how a software metric is determined
− Analyze actual case studies of software metrics in use

ARA SwE Curriculum Framework 79 Version 0.0

LR 32
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Project
Management (3.1)

• Software Quality
Management (3.3)

Type of
Instruction:

Computer Based Instruction

Name of the
Institution:

National Program Office for Computer Based Instruction

Name of the
Course:

The Software Development Process: Management Practices

Reference: http://faawbt.jccbi.gov/cbtlib/htmlplan/cbtweb/curicula/courses/MISG05E/MISG05E.htm

Location:

Duration: 4 hours

Prerequisites: Familiarity with a software process

Attendees: Software process managers, software engineers, and team leaders; business managers
with responsibility for a software process

Description: To provide an overview of management practices, software quality, and software
metrics
Topics Covered:
Project management principles
− Strategic planning
− The project plan
− Managing technical people
− Management of the software process
Quality assurance
− Process assessment and improvement
− Testing and benchmarking
− The Personal Software Process
Software metrics
− Measurement processes
− Using software metrics
− Data collection and analysis

ARA SwE Curriculum Framework 80 Version 0.0

LR 33
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Quality
Management (3.3)

Type of
Instruction:

Seminar

Name of the
Institution:

Software Quality Institute

Name of the
Course:

Software Quality Assurance

Reference: http://www.utexas.edu/coe/sqi/seminars/SoftwareQA.html

Location: Pickle Research Campus
University of Texas at Austin
PRC MER Code:R9800
Austin, TX 78712-1080
Telephone: (512) 471-4874 or (800) 687-8012
Fax: (512) 471-4824 or send E-mail to info@sqi.utexas.edu.

Duration: 3 days

Prerequisites: Management and development experience with software development projects

Attendees: Key managers, leaders and software developers in an organization where software
development or selection is a significant component of the business.

Description: Providing software developers and managers at all levels the insight for making the
software quality assurance processes visible and measurable, establishing the
standards for planning, developing and monitoring those processes and instilling the
commitment to do so is the objective of this course.

Course Outline:
− General concepts of quality - Quality work framework
− Planning software quality assurance activities
− Issues in quality measurement
− Applying quality standards
− Overview of the SEI Capability Maturity Model
− Techniques for planning / defining requirements that lead to high quality
− Defect management and prevention
− Specific software quality technologies
− SQA management practices
− SQA processes for producing high quality software
− Achieving the "ilities" of software (e.g., reliability, usability, maintainability, etc.)

Roles, responsibilities and authority of the SQA group.

ARA SwE Curriculum Framework 81 Version 0.0

LR 34
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Configuration
Management

Type of
Instruction:

Seminar

Name of the
Institution:

Software Quality Institute

Name of the
Course:

Software Configuration Management

Reference: http://www.utexas.edu/coe/sqi/seminars/SoftwareQA.html

Location: Pickle Research Campus
University of Texas at Austin
PRC MER Code:R9800
Austin, TX 78712-1080
Telephone: (512) 471-4874 or (800) 687-8012
Fax: (512) 471-4824 or send E-mail to info@sqi.utexas.edu.

Duration: 3 days

Prerequisites: Experience with software project management or estimating.

Attendees: Software project managers and technical contributors who are responsible for complete
software engineering efforts.

Description: To understand software configuration management as part of the software development
process and to understand a range of techniques for doing software configuration
management.

Course Outline:
− The configuration management process
− Baselines
− Identification of objects in the software configuration
− Version control
− Change control
− Configuration audit
− Status reporting

ARA SwE Curriculum Framework 82 Version 0.0

LR 35
Category of knowledge Area of knowledge Unit of knowledge

Software Management (3)

Type of
Instruction:

Seminar

Name of the
Institution:

ICE - Integrated Computer Engineering, Inc., Computers & Concepts Associates
Division

Name of the
Course:

Advanced Software Management

Reference:
http://www.candca.com/training.html

Location: All courses are designed as "on-site" training workshops; presented at the client's facility
or local hotel conference room. Prices are based on a minimum of 20 seats. Federal
and Department of Defense customers qualify for our lower GSA/FEDSIM rates.
Training funds can be placed on the GSA/FEDSIM contract and remain there until the
customer charges against it for desired training or other project management services.

Duration:
12 days

Prerequisites:
The benefit realized from training depends on prior knowledge and experience.
Normally anyone who finds themselves in a position in which one or more of these
courses and workshops would be useful will have the background necessary to benefit
from the training. Lack of software-specific knowledge and experience may be offset in
some cases by management and engineering experience in other fields. Non-technical
managers should seriously consider taking one or more management overview
workshops prior to taking other courses or workshops.

Attendees:
In general, anyone involved in software acquisition or development will benefit from
these courses and workshops

Description: Advanced Software Management is a comprehensive and intensive course which
provides in-depth coverage of the military and commercial policies, standards, practices,
methodologies and techniques necessary for the planning and management of large-
scale software acquisition and development projects. The focus is on the elimination of
cost and schedule overruns through the identification and management of program
risks, and an emphasis on Software Best Practices.
Topics and Outline:
• Introduction and Background
• Methods for Managers
• Software Architectures: DII COE, JTA and ATA
• System Safety: Analysis and Assurance
• Security Considerations
• Requirements: Information, Function, Interface and Integration
• Configuration Management
• Software Defects and Inspections
• Project Planning, Estimation, Scheduling and Earned Value
• Software Risk Management and Metrics
• Metrics and Measures
• Software Quality Management

ARA SwE Curriculum Framework 83 Version 0.0

• Contracting for Software
• Testing: Evaluating the Project
• Independent Verification and Validation (IV&V)
• Integrated Product Teams
• People Management
• The Software Risk Assessment Process
• Summary, Conclusions and Recommendations

ARA SwE Curriculum Framework 84 Version 0.0

LR 36
Category of knowledge Area of knowledge Unit of knowledge

Software Management (3)

Type of
Instruction:

Distance Learning

Name of the
Institution:

National Technological University

Name of the
Course:

WS99091098 - Software Project Management Program

Reference: http://www.ntu.edu/5/bytopic99.htm

For Academic Questions Contact: Phil Barry (612) 624-8311 FAX (612) 625-0572 E-
mail: barry@cs.umn.edu
For Administrative Questions Contact: Fran Schirmers (612) 624-2332 FAX (612) 626-
0761 E-mail: unite@cs.umn.edu

Location: On line

Duration: Thirty-one tape-delayed, 2-hour broadcasts

Prerequisites: The series requires experience working with software engineering projects,primarily so
the attendee can understand the problems and appreciate some of the practical
difficulties. Basic college level mathematics is also required.

Attendees: The target audience includes current and prospective software development leads and
managers. It will also be of interest to system engineers, software process specialists,
managers of disciplines related to software engineering (such as software configuration
management), and program managers whose programs have a significant software
component.

Description: This program, designed to improve software management skills, will consist of
approximately 29 short courses, organized into four series. Each series is designed to
focus on a different aspect of software project management: software project planning,
software project execution, software project measurement and analysis, and software
productivity and quality engineering. This short course program is based on several
courses from the SMU MS program in software engineering as well as the SEI
Capability Maturity Model. Each short course will include one or more exercises that
apply the principles to concrete examples typical of those found in the workplace.
A certificate will be given to those students completing this series in its entirety,
including turning in all individual exercises for evaluation.
The "Software Project Planning" series will show how to plan and estimate a software
development project. Using practical examples and proven techniques, the student will
learn how to assess a software project; estimate software size, effort, cost and
schedule; assess risks; and plan for a successful software development.
The "Software Project Execution" series will follow on from the planning series, focusing
on the execution phase of a software project. It emphasizes practical aspects of risk
management, configuration management, quality engineering, and schedule
management, as well as tracking and oversight.
The "Software Project Measurement and Analysis" series will show how to define

ARA SwE Curriculum Framework 85 Version 0.0

appropriate metrics and to make effective use of them without excessive cost or
alienation of software engineering staff. The series will have two running themes: taking
the proper measurements and using the measurements effectively. The first theme will
begin with several principles of measurement theory, applying them for effective
selection and analysis of metrics. The second will focus on understanding human
behavior and using that knowledge for effective collection and application of metrics.
Recommended metrics will be discussed throughout, with examples and exercises that
help the participant apply the principles to their own application.
The "Software Productivity and Quality Engineering" series will serve as a capstone to
the program by addressing how to engineer quality into a software product while
improving productivity and reducing cycle time. The instructor will show in practical
terms how to apply a variety of techniques within the context of the software
development process. Topics will include cost of quality and value-added analysis,
software process improvement, software cycle time and productivity improvement,
software reliability, and six-sigma techniques.

ARA SwE Curriculum Framework 86 Version 0.0

LR 37
Category of knowledge Area of knowledge Unit of knowledge

Software Management (3)

Type of
Instruction:

Workshops

Name of the
Institution:

SEPO

Name of the
Course:

Software Management for Executives Course

Reference: http://sepo.nosc.mil/training.html
 If you are interested in this workshop, please contact the Software Engineering Process
Office (SEPO) at (619) or DSN 553-6694 or send email to sepo@spawar.navy.mil

Location: SEPO, D12
SPAWARSYSCEN
53560 HULL ST.
SAN DIEGO, CA 92152-50001
PHONE: (619)553-6694
FAX: (619)553-6249
LOCATION: BUILDING 312, BARRACKS AREA

Duration: 8 hours

Prerequisites:

Attendees: All department heads, division managers, other upper-level executives, and sponsors
who oversee other managers directly responsible for software-intensive projects.

SEPO provides several software engineering training courses for SSC San Diego
government employees. Under certain circumstances, on a space available basis, there
are openings to government employees outside of SSC San Diego. For additional
information on course schedules, registration requirements, and other questions not
covered in the flyers below, please contact SEPO at (619) 553-6694 or email Elizabeth
Gramoy, SEPO Director

Description: An eight-hour workshop for SSC SD managers at the department, division, and branch
levels on the fundamentals of fostering continuous improvement of software engineering
and project management practices at the Center. This workshop covers how a process
discipline provides the critical foundation for software project success, and how the
Center is approaching the improvement of its software processes. This will be
accomplished by discussing the rationale for the development and use of software
engineering and management processes. The importance and application of
measurement in tracking project progress and process improvement at various
management levels also will be emphasized.

ARA SwE Curriculum Framework 87 Version 0.0

LR 38
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Project
Management (3.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Oregon Graduate Institute of Science and Technology
Center for Professional Development

Name of the
Course:

Software Project Management Planning

Reference: http://www.ogi.edu/CPD/courses/

Location: 20000 N.W. Walker Road
Beaverton, Oregon 97006-8921
Fax: +1-503-748-1686.

Duration: 2 days

Prerequisites: No special background is required. Those with more experience and knowledge of
software and software management will benefit most from this course.

Attendees: Project managers, software acquirers, software developers, systems engineers, division
managers and all others who prepare project plans, approve them, or live with the
consequences of planning will benefit from this course.

Description: This two-day course presents the details of these topics and provides examples of
methods, tools, and techniques that can be used to prepare software project
management plans, to make estimates of effort and schedule, and to update estimates
and plans as conditions change. In addition, a procedure for developing generic plans
and tailoring them for individual projects will be presented.

Course Objectives
After completing this course, you will understand what elements to include in a software
project plan, techniques for preparing those elements, and how to update your project
plans as conditions change. In addition, you will understand how to develop a generic
plan for your organization and how to tailor it for individual projects.

ARA SwE Curriculum Framework 88 Version 0.0

LR 39
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Management (3)

• Software Testing (2.4)
• Software Quality

Management (3.3)

• Unit Testing (2.4.1)
• System Testing (2.4.3)
• Software Quality Assurance

(3.3.1)
• Software Metrics (3.3.3)

Type of
Instruction:

Seminar

Name of the
Institution:

Rice Consulting Services, Inc.

Name of the
Course:

Introduction to Quality Assurance and Testing

Reference: http://www.riceconsulting.com/

Location:

Duration: 2 days (can be customized to a 1 day version)

Prerequisites: None

Attendees: This course is designed for users, testers, developers and managers who want to learn
how to assure the quality of the software they deliver. Any developer, tester, user, or
manager who wants to learn about the basics of software quality assurance and testing.

Description: The course lays a foundation in the principles of quality and quality assurance. Then,
techniques are presented that can make QA an effective force in your organization.
The course concludes with developing your own action plan for quality.
Topics:
− Concepts of Quality: Lessons From the Gurus of Quality
− Concepts of QA
− Software Risks
− Software Testing Basics
− The Purpose of Testing
− The Testing Organization: Roles and Responsibilities
− How to Develop Quality Requirements
− Software Testing Methods (Unit Testing, Path Testing, Test Planning, Regression

Testing, System Testing, Stress Testing, Automated Testing, Path Testing)
− Measurements and Metrics

- How to Decide What to Measure
- Presentation Ideas

− Developing an Action Plan for Quality for Your Organization

ARA SwE Curriculum Framework 89 Version 0.0

LR 40
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Quality
Management (3.3)

• Verification & Validation
(3.3.2)

Type of
Instruction:

Seminar

Name of the
Institution:

Richard Ball & Associates Inc.

Name of the
Course:

Software Inspections and Walkthroughs

Reference: http://www3.pei.sympatico.ca/ball/index.html

Location:

Duration: 2 days

Prerequisites: None

Attendees:
− IT practicing professional
− Quality Assurance staff, including Inspection Moderators
− Users who will be evaluating software deliverables

Description: Customers are expecting ever higher standards of software quality. At the same time,
the complexity of software is increasing, and it is increasingly recognized that machine-
based testing, by itself, is not a cost-effective technique for ensuring the quality of
software. In order to meet these demands, organizations are increasingly turning
towards software inspections to ensure the cost-effective production of quality software.
This in-depth seminar covers software inspections, walkthroughs, and other forms of
human-based reviews. The seminar is suitable for organizations thinking about
introducing inspections, or needing to improve existing inspection processes. Often,
inspections stall or fail because they are introduced without proper training. This
seminar helps overcome that deficiency.

Course Outline
Software Quality Issues
Types of Technical Reviews
Walkthroughs
Baseline Inspection Characteristics
Inspection Roles
The Inspection Process
Ten Keys to Inspection Success
Inspections Across the System Development Lifecycle
Administration of Inspections
What Data You Should Collect
Implementing Inspections
Root Cause Analysis

ARA SwE Curriculum Framework 90 Version 0.0

LR 41
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Quality
Management (3.3)

• Verification &Validation
(3.3.2)

Type of
Instruction:

Seminar

Name of the
Institution:

Software Quality Institute

Name of the
Course:

Verification and Validation Processes and Methods

Reference: http://www.utexas.edu/coe/sqi/seminars/table.html

Location: Pickle Research Campus
University of Texas at Austin
PRC MER Code:R9800
Austin, TX 78712-1080
Telephone: (512) 471-4874 or (800) 687-8012
Fax: (512) 471-4824 or send E-mail to info@sqi.utexas.edu.

Duration: 2 days

Prerequisites: Experience with software project management or life cycle support processes.

Attendees: Software project managers and technical contributors who are responsible for complete
software engineering efforts.

Description: Provide the training for software engineers to implement and manage Verification and
Validation processes and methods throughout the software life cycle.
Course Outline:
• Foundations for V & V
• Overview of V & V Management
• Constructing a Life Cycle V & V plan
• Concept Phase V & V
• Requirements Phase V & V
• Design Phase V & V
• Implementation Phase V & V
• Test Phase V & V
• Installation and Checkout Phase V & V
• Operation and Maintenance Phase V & V
• Software Verification & Validation Reporting
• Verification & Validation Administrative Procedures

ARA SwE Curriculum Framework 91 Version 0.0

LR 42
Category of knowledge Area of knowledge Unit of knowledge

• Computing Fundamentals (1)
• Software Product

Engineering (2)

• Programming Languages
(1.5)

• Software Requirements (2.1)
• Software Design (2.2)
• Software Coding (2.3)
• Software Operation and

Maintenance (2.5)

• Programming Paradigms
(1.5.2)

Type of
Instruction:

Computer Based Instruction

Name of the
Institution:

National Program Office for Computer Based Instruction

Name of the
Course:

The Software Development Process: Principles

Reference: http://faawbt.jccbi.gov/cbtlib/htmlplan/cbtweb/curicula/courses/MISG04E/MISG04E.htm

Location:

Duration: 3 hours

Prerequisites: Familiarity with a software process

Attendees: Software process managers, software engineers, team leaders; business managers
with responsibility for a software process

Description: To provide an overview of the software process and principles in world-class software
organizations.
Topics Covered:
Processes and lifecycles
− Developing software
− Software engineering fundamentals
− Software development life cycles
− Programming paradigms
Software specification and design
− Requirements engineering
− System design
− Formal specification
− Computer-aided software engineering
− Real-time and distributed systems
Reuse and re-engineering
− Reuse
− Re-engineering

ARA SwE Curriculum Framework 92 Version 0.0

LR 43
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Design (2.2)

Type of
Instruction:

Distance Learning

Name of the
Institution:

National Technological University

Name of the
Course:

MC99050602 - Software Design Techniques

Reference: http://www.ntu.edu/5/bytopic99.htm

Location: One live

Duration: 3-hour broadcast

Prerequisites: Software development or management familiarity and an understanding of software
requirements modeling.

Attendees: This course is intended for software managers, project leaders, programmers and
software engineers who are interested in structured and object-oriented approaches to
software development. For those already familiar with basics of software design, this
course will serve as a refresher. For those with little or no knowledge of software design
techniques, this course will provide a starting point, familiarizing you with concepts,
methods and approaches to software design.

Description: Software design is a mapping from models that represent software requirements to a
model for software solutions. Like any other design activity, software design involves
judgment and decision making that affects the quality, maintainability, modifiability and
other aspects of the end product. A systematic software design approach helps with
such decision making and reduces the complexity of this task by a process of stepwise
refinement. In this course we will view software design as a translation of the analysis
models of the software system into a design layout. The focus is mostly on high-level
architectural design aspects of a system, rather than the low-level (algorithmic) design
of individual modules/programs. We will introduce basic concepts and principles of
software design, and familiarize participants with the most common methods for
designing the architecture of software systems. Both function-based and object-based
approaches to software design will be presented.
BENEFITS:
− Understand the issues involved in the process of software design
− Identify design objectives and quality criteria for software designs
− Apply abstraction techniques and perform stepwise refinement for design
− Develop or evaluate software architectures
− Perform transform and transaction analysis for dataflow-oriented design
− Understand the structure-oriented approach to software design
− Understand object-oriented approaches to software design

ARA SwE Curriculum Framework 93 Version 0.0

LR 44
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Requirements (2.1)

• Software Design (2.2)

Type of
Instruction:

3 Credit Hour class

Name of the
Institution:

National Technological University

Name of the
Course:

SE 533-N Software Requirements and Design Engineering

Reference: http://www.ntu.edu/1/credit/se533n.htm

Location: Department of Computer Science and Engineering
Southern Methodist University
P.O. BOX 750122
Dallas, TX 75275
(214) 768-3080 CSE Dept. FAX (214) 768-3085 E-mail: bralick@seas.smu.edu

Duration: 43 (60 minute) lectures

Prerequisites: None

Attendees:

Description: The objective of this course is to impart a solid understanding of the role of
requirements engineering and design within the software life-cycle. Students completing
this course will have a framework for evaluating structured, object-oriented, data-
oriented, and formal approaches to requirements and design and will understand the
role of architectural paradigms in the engineering of complex systems.
Course Description: The course provides coverage of software requirements
engineering with topics that include requirements elicitation, requirements analysis and
the development of a software requirements specification. Various approaches to
requirements analysis will be examined and a framework for evaluating various
approaches will be developed.
The coverage of design includes key software design principles and the role of design
paradigms and architectures in the design process. Design issues relating to classes of
applications including real-time systems and information systems will be explored.

ARA SwE Curriculum Framework 94 Version 0.0

LR 45
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Requirements (2.1)

Type of
Instruction:

Course

Name of the
Institution:

Integrated Computer Engineering, Inc., C&CA Division

Name of the
Course:

Software Requirements Engineering

Reference: http://www.iceinc.to/

Location: 2301 Kenstock Drive Suite 103
Virginia Beach, VA 23454-0344
1-888-463-0744

Duration: 1-1/2 days

Prerequisites: None

Attendees: In general, anyone involved in software acquisition or development will benefit from this
course

Description: Software Requirements Engineering introduces managers, engineers and software
specialists to the formal definition, validation and management of software
requirements. Requirements Engineering is perhaps the most difficult and critical
process in software engineering. All other management and technical activities depend
on the complete, accurate and unambiguous definition of system and software
requirements.
 Objective:
 At the end of this course participants should be able to:
• Explain why Requirements Engineering is so difficult and so critical
• Apply a disciplined process and systematic methods to the identification and

specification of requirements
• Develop complete, concise, accurate and unambiguous requirements models and

specifications

ARA SwE Curriculum Framework 95 Version 0.0

LR 46
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Design (2.2)

Type of
Instruction:

Computer Based Instruction

Name of the
Institution:

National Program Office for Computer Based Instruction

CBT System Campus Server

Name of the
Course:

Object-Oriented Design

Reference: http://faawbt.jccbi.gov/cbtlib/htmlplan/cbtweb/curicula/courses/OOD/OOD.htm

Location:

Duration: 3 hours

Prerequisites: Some experience of conventional systems design

Attendees: Systems designers

Description: To provide the user with some knowledge of and experience in using object-oriented
methods in the systems design process, with particular reference to database and GUI
applications
Topics Covered
− Refining the object model
− Developing objects
− Inheritance and delegation
− Modifying the object model
− Data protection
− Documenting the design
− Design changes
− Validation
− Good design criteria
− Object-oriented database management
− OO/DBMS coupling
− Pure OODBMSs
− Object store
− GUI design
− Object window
− NextStep

ARA SwE Curriculum Framework 96 Version 0.0

LR 47
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Design (2.2)

Type of
Instruction:

Seminar

Name of the
Institution:

Oregon Graduate Institute of Science and Technology
Center for Professional Development

Name of the
Course:

Object Oriented Analysis and Design

Reference: http://www.ogi.edu/CPD/courses/

Location: 20000 N.W. Walker Road
Beaverton, Oregon 97006-8921
Fax: +1-503-748-1686.

Duration: 4 days

Prerequisites: Students are expected to have a background in programming and/or software systems
design.

Attendees:

Description: At the end of the seminar, participants will be able to describe the concepts and
expected benefits of object oriented programming, recognize the characteristics of a
design that will actually get those benefits, understand design patterns and describe at
least three of them, understand frameworks and the structure of object oriented
libraries, read UML notation and use it to develop and communicate a design,
understand use cases and apply use case analysis and design read object interface
descriptions in C++, Java and CORBA IDL, understand the Java and CORBA models
for concurrent objects, compare and contrast the CORBA and OLE distributed object
models, plan a development project using an interative/incremental approach.

ARA SwE Curriculum Framework 97 Version 0.0

LR 48
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Requirements (2.1)

Type of
Instruction:

Computer Based Instruction

Name of the
Institution:

National Program Office for Computer Based Instruction

CBT System Campus Server

Name of the
Course:

Object-Oriented Analysis - Objects and Classes

Reference: http://faawbt.jccbi.gov/cbtlib/htmlplan/cbtweb/curicula/courses/OOAOC/OOAOC.htm

Location:

Duration: 5 hours

Prerequisites: Some experience of conventional systems analysis

Attendees: Systems analysts

Description: To provide the user with some knowledge of and experience in using object-oriented
methods in the systems analysis process’
Topics Covered
− Software development models
− Objects
− Functions vs objects
− Challenging candidate objects
− Object descriptions
− Class hierarchies
− Class responsibilities
− Methods
− Class attributes
− Object diagrams
− Messages
− Class relationships
− Generalization and specialization
− Inheritance
− Aggregate relationships
− Association
− Object schemas

ARA SwE Curriculum Framework 98 Version 0.0

LR 49
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Requirements (2.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Oregon Graduate Institute of Science and Technology
Center for Professional Development

Name of the
Course:

Software Requirements Engineering

Reference: http://www.ogi.edu/CPD/courses/

Location: 20000 N.W. Walker Road
Beaverton, Oregon 97006-8921
Fax: +1-503-748-1686.

Duration: 2 days

Prerequisites: No special background is required. Those with more experience and knowledge of
software engineering issues will benefit most from this course.

Attendees: Product managers, software project managers, software acquirers, software developers,
systems engineers, line managers and all others who prepare requirements, approve
them, or live with the consequences of requirements analysis will benefit from this
course.

Description: This two-day course is one in a series of courses offered by the Center for Professional
Development of Oregon Graduate Institute in collaboration with the Competency
Recognition Program of the IEEE Computer Society. The course is based on IEEE
Standards 830 and 1362. Deficiencies in requirements is one of the primary reasons
software projects fail to deliver satisfactory products within acceptable time frames and
resource allocations. Software requirements engineering involves understanding user
needs and customer expectations and mapping those needs and expectations into
technical specifications for a system that will satisfy users and customers in a complete,
consistent, and unambiguous manner. Requirements engineering is also concerned
with managing the evolving baseline and conducting impact analyses as requirements
change. The course covers methods, tools, and techniques for eliciting, analyzing,
documenting, verifying, and managing requirements.
Outline:
1. Introduction to requirements engineering
2. User requirements and technical specifications
3. Elicitation and analysis of requirements
4. Prioritizing and verifying the requirements
5. Mapping user requirements into technical specifications
6. Techniques for documenting software requirements
7. Managing the evolution of software requirements

ARA SwE Curriculum Framework 99 Version 0.0

LR 50
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Design (2.2) • Architectural Design (2.2.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Advanced Strategies, Inc.

Name of the
Course:

Architectural Design

Reference: http://www.advancedstrategiesinc.com/courses/c37.htm

Location: 3980 Dekalb Technology Parkway in Atlanta, Ga.

Duration: Two Days

Prerequisites: Data Modeling and Process Modeling

Attendees: This course is targeted for analysts, designers, and other individuals involved in system
design.

Description: This course presents the concepts of architectural design and illustrates how to
document the architectural design using the new physical data flow diagram. It uses
three models created during analysis as a basis for developing the new physical data
flow diagram: The Data Model, The Process Model, and The Event Model.
The student shall gain the ability to employ a reliable, orderly, and manageable means
for using the analysis outputs to develop a system architectural design.

Course Outline:
− The Analysis Models
− Reconciling Analysis Models
− CRUD and Other Correlations
− Data Transaction Analysis
− Developing the New Physical Data Flow Diagram

− Business System Design
− Technical Design

ARA SwE Curriculum Framework 100 Version 0.0

LR 51
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Design (2.2)

Type of
Instruction:

Seminar

Name of the
Institution:

Advanced Strategies, Inc.

Name of the
Course:

Object-Oriented Analysis and Design

Reference: http://www.advancedstrategiesinc.com/courses/c38.htm

Location: http://www.advancedstrategiesinc.com/courses/c12.htm

Duration: Four Days

Prerequisites: Event Modeling and Process Modeling

Attendees: Individuals who are charged with designing business applications which are to be
implemented with an object-oriented programming language.

Description: This course provides a way for software developers to successfully utilize the new
object-oriented software programming languages by shifting their development
paradigm and engineering their applications appropriately. This course will cover a
strategy for transforming business events into system events and mapping those into
GUI components.
 The student shall gain the skills necessary to transform the analysis specification into
an engineering design of an event-driven graphical user interface (GUI) application that
uses software objects. The student will also learn the fundamentals of designing GUI
interfaces and appropriate uses for them The course will also provide the student with
concepts and a strategy for isolating object-oriented portions of applications from
traditional portions.

Course Outline:
− Analysis specifications needed to support object-oriented design
− Graphical User Interface (GUI) principles, components, and uses
− Analysis of high-level business events and detail events
− Object-oriented programming concepts
− Using objects vs. creating objects
− Encapsulation

ARA SwE Curriculum Framework 101 Version 0.0

LR 52
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Requirements (2.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Software Productivity Consortium

Name of the
Course:

Requirements Management

Reference: http://www.software.org/pub/Courses.html

Location: SPC Building
2214 Rock Hill Road
Herndon, VA 20170-4227
1-703-742-7211

Duration: 3 days

Prerequisites:

Attendees: This course is for project managers, software managers, senior software staff and
software engineers responsible for the definition, allocation, or management of
requirements.

Description: Managers and developers cite continuous requirements changes as being among the
most significant problems they face. The Requirements Management course addresses
the management controls that must be established and followed before user
requirements can be correctly captured and consistently implemented. This course will
offer methods to reduce the impact of requirements changes by capturing them correctly
the first time, creating baselines, and managing changes to requirements as they
evolve. By controlling the requirements process, participants learn to schedule and cost
software activities more accurately, and maintain consistency among software plans,
products and activities.
Benefits
− Upon completion of this course, attendees will be able to:
− Identify CMM® Level 2 Requirements Management activities
− Establish a baseline for software requirements
− Define a process for reviewing requirements
− Evaluate requirements for consistency and correctness
− Identify techniques for tracing requirements through the software life cycle
− Define a process for managing changes to requirements.

ARA SwE Curriculum Framework 102 Version 0.0

LR 53
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Requirements (2.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Software Productivity Center

Name of the
Course:

In Search of Excellent Requirements

Reference: http://www.spc.ca/training/courses/990506-req.htm

Location: #460-1122 Mainland St.,
Vancouver, BC V6B 5L1, Canada
Tel: (604) 662-8181 Fax: (604) 689-0141

Duration: 2 days

Prerequisites: none

Attendees: This seminar will be useful for software engineers, managers, requirements analysts,
and anyone else engaged in gathering, documenting, analyzing, or managing customer
requirements for software applications.

Description: This seminar describes tested methods that can help any organization improve the way
it elicits, analyzes, documents, verifies and manages software requirements.
Characteristics of excellent requirements statement and requirements specifications are
presented and used to evaluate some sample functional requirements. The seminar
emphasizes several practical techniques:
− customer involvement through a "project champion" model
− the application of use cases for defining user needs and system functions
− a simple model for prioritizing requirements writing software requirements

specifications using a standard template
− construction of dialog maps to model user interfaces
− the use of prototypes to clarify and refine user needs
− the use of technical inspections to find requirements errors
− use of a requirements traceability matrix to connect requirements to design

elements, code, and tests.

The basic concepts of requirements management are described, as are practical
methods for managing changes to requirements. These techniques can reduce project
risk by improving the quality and control of the software requirements, thereby
increasing the likelihood of a successfully completed project.

ARA SwE Curriculum Framework 103 Version 0.0

LR 54
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Requirements (2.1)

Type of
Instruction:

Seminar

Name of the
Institution:

GTE – Information Technology Training

Name of the
Course:

Requirements Management Using RequisitePro

Reference: http://ittraining-gte.com/itt/default2.asp?mainURL=Catalog/default.asp

Location: Tampa

Duration: 2 Days

Prerequisites: − Requirements Management Fundamentals class.
− Mandatory Reading: Software Requirements Engineering (Chapter 3).
− Students must bring their copy of Software
− Requirements Engineering to class (provided in Module 1).
− Optional Reading: RAPID Development by Steve McConnell.
− Must bring an example of a recent requirements
− document that they are in the process of creating.
− As an option, students can bring a completed project.
− Material must be in soft copy on a standard 3.5”
− 1.44Mb High Density Floppy Disk in MSWord format.
− This material is critical for the second day of this course.

Attendees: This course is intended for all individuals involved in the activity of gathering,
documenting and managing requirements allocated to software.

Description: Using both lectures and exercises, students will learn the functionality of the
RequisitePro case tool its use in performing Requirements Management. Emphasis is
provided in areas of proper requirements documentation and traceability.
OBJECTIVES:
− Use the RequisitePro software package (case tool).
− Understand how RequisitePro is used to document
− and manage requirements allocated to software.
− Tag and relate requirements documented in the SRS.
− Establish and manage requirement document
− hierarchies.
− Use automated requirements traceability features.
− Convert a real SRS into RequisitePro.

ARA SwE Curriculum Framework 104 Version 0.0

LR 55
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Requirements (2.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Software Productivity Consortium

Name of the
Course:

Consortium Requirements Engineering (CoRE)

Reference: http://www.software.org/pub/Courses.html

Location: SPC Building
2214 Rock Hill Road
Herndon, VA 20170-4227
1-703-742-7211

Duration:

Prerequisites: 3-day video, ADARTSSM /CoRE 1/2-day overview

Attendees: Software engineers who develop requirements for real-time embedded systems. The
participants should have basic skills in embedded system development and a general
knowledge of modern software engineering principles and practices.

Description: This 3-day course provides instruction in applying the CoRE method. Benefits of CoRE
include the ability to develop precise, testable requirements specifications, which are
demonstrably complete and consistent, for embedded software systems. The course
covers CoRE benefits, foundational concepts, the CoRE process, notation, and the
analysis of CoRE specifications for completeness and consistency. The class exercises
provide experience in the method through hands-on application.
On completion of this course, attendees will understand:
− The goals and benefits of the CoRE method
− The underlying concepts and principles used to develop rigorous requirements

specifications in CoRE
− Notations and specification techniques for writing a CoRE specification
− How to develop a requirements specification to facilitate requirements changes, risk
− mitigation, and reuse
− How to analyze a CoRE specification for completeness and consistency

ARA SwE Curriculum Framework 105 Version 0.0

LR 56
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Requirements (2.1)

Type of
Instruction:

Workshop

Name of the
Institution:

STSC

Name of the
Course:

Requirements Engineering

Reference: http://www.stsc.hill.af.mil/pns/requirements/rewkshp.asp

 (801)775-3055
 DSN 775-3055
 Email: cookd@software.hill.af.mil

Location: RE Workshop is conducted at client sites.

Duration: 4 half days (with afternoon mentoring) or per client request.

Prerequisites:

Attendees:
Organizations that are: Exploring the scope of their requirements issues, Wishing to
learn about "Engineering" requirements; Implementing a requirements process change.

Description: Three themes are developed during the workshop
1.The benefits of "Engineering" Requirements.
2.Technology Adoption.
3.Process Improvement.

− The Definition of Requirement
− Requirements and the Life Cycle
− Requirements Management
− Requirements Elicitation
− Requirements Analysis
− Object Oriented Analysis
− Structured Analysis
− Real Time Analysis
− Managment indicators for Quality Requirements
− Requirements Tools and Techniques
− Requirements Documentation
− Requirements V&V
− Quality Requirements
− Writing testable Requirements
− Technology Adoption
− Process Improvement

ARA SwE Curriculum Framework 106 Version 0.0

LR 57
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Requirements (2.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Richard Ball & Associates Inc.

Name of the
Course:

Software Requirements Gathering & Specification

Reference: http://www3.pei.sympatico.ca/ball/index.html

Location:

Duration: 2 days

Prerequisites: None

Attendees:
− Software Requirements Analysts
− Software Developers
− Business Analysts
− Business Users involved in the software requirements process
− QA and Audit
− Software Process Engineers

Description: This course provides a comprehensive introduction to state-of-the-art software
requirements gathering and specification techniques. It defines where requirements fit
into the SDLC. It presents current industry standards for software requirements
gathering and specification - including the IEEE and Software Engineering Institute
(SEI) requirements standards and guidelines. It clearly contrasts requirements
(problem) statements from design (solution) statements.

Course Outline:
− Roles & Responsibilities
− "Problem" vs. "Solution"
− The SW Requirements Definition Process
− Requirements Building Blocks
− The Software Requirements Specification (SRS)
− Automated Tools for Requirements Gathering and Specification
− Requirements Diagramming, Modeling, and Methodologies
− Requirements Gathering Techniques (I)
− Requirements Gathering Techniques (II)
− Requirements Validation Techniques
− Requirements Methodology Framework

ARA SwE Curriculum Framework 107 Version 0.0

LR 58
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Testing (2.4)

Type of
Instruction:

Seminar

Name of the
Institution:

Rice Consulting Services, Inc.

Name of the
Course:

Becoming an Effective Test Team Leader

Reference: http://www.riceconsulting.com/

Location:

Duration: 2 days

Prerequisites: A basic knowledge of software testing techniques.

Attendees: This session is designed for test leaders and test managers, people who expect to be in
a test leadership role, or people who lead other test managers and test leaders. Any
developer, tester, user or manager who wants to learn about the basics of software
testing.
Any tester, user or manager who wants to learn about what it takes to successfully and
effectively lead a software testing effort.

Description: The main objective of this session is to teach you how to be the very best test manager
and leader. We will discuss what makes a good leader and how to be the best at
leading a test team.
How can we keep up with changes and still test to deliver quality software? This session
also seeks to answer that question.
A good test team leader must also know the basic issues involved in testing. To
reinforce this knowledge, this session will present an overview of:
− Regression testing and why you need to do it
− Regression testing issues and tips for performing regression testing
− Test automation vs. manual testing
− Tips for automated testing
− Test planning and tips for test planning
− How to recruit and train a quality test team
− Working with developers and users
− How to keep the test on track
After attending this session, you will have the information to effectively lead a test team,
make your case to management, and lead your test team through the challenges you
face daily.

ARA SwE Curriculum Framework 108 Version 0.0

LR 59
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Testing (2.4) • Integration Testing (2.4.2)

• System Testing (2.4.3)

Type of
Instruction:

Distance Learning

Name of the
Institution:

Northern Virginia Community College (NVCC)

Name of the
Course:

0602-835 - Software Testing and Implementation

Reference: http://distancelearning.rit.edu/MsinsoftwareDevelpmentMgr.html

Location: RIT Distance Learning
Local #:716-475-5089
Phone: #1-800-CALL RIT
TTY #: 716-475-5896
Fax #: 716-475-5077
Email: DISTED@rit.edu

Duration: Lecture 3 hours per week.

Prerequisites: Part of a Masters in Software Development and Management:

A certain minimal background is required of all students wishing to enter the master's
program. Acceptance into the master's program is possible even though the applicant
must accomplish some additional courses. Students whose undergraduate or industrial
preparation does not satisfy the above content or grade-point requirements may satisfy
requirements by taking one or more of the following Bridge Program courses, as
prescribed by the Graduate Program Chair. Courses in the Bridge Program are not part
of the 48 quarter credit hours required for the master's degree, and their grades are not
included in the student's graduate grade-point average.
Courses in the student's academic background and work experience can be used to
satisfy these prerequisites, with approval of the department. Remaining prerequisites
must be met by completing appropriate courses at a post-secondary institution of the
student's choosing. Courses selected for this purpose must be approved by the
department.

Attendees: Any

Description: Topics covered include testing schemes (black-box, white-box), integration schemes,
validation testing, graphic analysis. Reliability models (seeding, hazard) are covered.
Software maintenance techniques and tools are covered. (0602-820) Credit 4

ARA SwE Curriculum Framework 109 Version 0.0

LR 60
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Testing (2.4) • Test Documentation (2.4.7)

• Unit Testing (2.4.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Computer Generated Solutions - Instructor Led Technical Training

Name of the
Course:

Software Quality Assurance Techniques

Reference: http://devel.netxactics.com/cgsinc/_training/ilt/t272.htm

Location: Computer Generated Solutions, Inc. (World Headquarters)
1675 Broadway, New York, N.Y. 10019
Tel: (212) 408-3800 • Fax: (212) 977-7474

Duration: 2 Days

Prerequisites: None

Attendees: Programmers, analysts, business liaisons and project leaders

Description: This course offers techniques to locate errors early in development and also
concentrates on the more labor-intensive and dynamic coding and testing phases.
Frequently, testing is the most expensive, but also ineffective phase of a project. The
purpose of testing is not to create specifications, but to ensure that the system being
developed meets the agreed-upon specifications. Quality is a major goal for customers
and systems. Although testing does not create quality, it certainly helps us determine if
we have it. This course provides the tools to save time, money, and frustration, and
deliver systems that are more effective. Why testing, when and who
− Definitions, terms and categories
− The test plans
− The data
− Dynamic testing techniques
− Testing design
− Testing analysis
− Testing implementation

ARA SwE Curriculum Framework 110 Version 0.0

LR 61
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Testing (2.4)

Type of
Instruction:

Seminar

Name of the
Institution:

Richard Ball & Associates Inc.

Name of the
Course:

Software Testing and Quality Assurance

Reference: http://www3.pei.sympatico.ca/ball/index.html

Location:

Duration: 3 days

Prerequisites: None

Attendees:
− IT practicing professionals and Quality Assurance staff

Description: Testing and quality assurance skills are increasingly essential to successful software
development. System Requirements and Design must be tested for completeness,
consistency, and clarity. Programs must be tested for correctness, structure, simplicity,
and efficiency. Delivered software must be tested for function, performance, usability,
reliability, etc. and then integrated into an increasingly complex production environment.
This seminar presents state-of-the-art software testing and quality assurance
techniques covering the entire software lifecycle. The seminar maintains a practical
perspective, dealing realistically with issues such as deadline-driven and budget-
constrained testing efforts.

Course Outline:
Software Testing: The Problem
Lifecycle Testing: The Solution
Initiation-Phase Testing
Requirements-Phase Testing
Design-Phase Testing
Testing During SW Build & Implementation
The Software Testing Lifecycle (STLC)
Requirements-Based (Black Box) Test Case Design
Code-Based (White Box) Test Case Design
Unit Testing
System, Acceptance, and Production-level Testing
Build/Thread Testing: An Integrated Development/Test Strategy

ARA SwE Curriculum Framework 111 Version 0.0

LR 62
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Testing (2.4)

Type of
Instruction:

Seminar

Name of the
Institution:

Forum Training

Name of the
Course:

Software Testing: Part I

Reference: http://www.swforum.com/training/testing1.html

Location:

Duration: 1.5 Days

Prerequisites: None

Attendees: Software developers and testers who perform unit and integration testing in software
environments

Description: This course presents a foundation for planning and executing efficient and effective unit
and integration testing. Participants learn the importance and benefits of testing and
how to apply systematic functional coverage and code coverage techniques. They also
learn how to perform incremental integration and regression testing and how to use test
process assessment and improvement techniques. Planning an actual testing activity is
part of the course.

Upon completion, the participant will be able to:
• Understand the importance and benefits of testing
• Plan a testing activity
• Apply systematic functional coverage techniques
• Apply systematic code coverage techniques
• Perform incremental integration and regression testing
• Utilize test process assessment and improvement techniques

ARA SwE Curriculum Framework 112 Version 0.0

LR 63
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Testing (2.4)

Type of
Instruction:

Distance Learning

Name of the
Institution:

National Technological University

Name of the
Course:

MC99081801 Statistical Testing for Software Intensive Systems

Reference: http://www.ntu.edu/5/bytopic99.htm

Location: One live

Duration: 3-hour broadcast

Prerequisites: A basic knowledge of software testing practices and statistics.

Attendees: This course will be of interest to technical software developers, managers, software
quality engineers, and systems engineers who deal with the many issues confronting
the testing software and software intensive systems.

Description: In many industries, products are typically certified using protocols in which random
samples of the products are drawn, test characteristics of operational use are applied,
and analytical or statistical inferences are made. Products meeting this pre-defined
standard are "certified" as fit for use. The same concepts can be applied to software.
Using the same statistical base, software can be tested using operational usage models
where test cases are generated randomly from the usage model and the test results are
interpreted according to mathematical and statistical models to determine measures of
software reliability. In this course, the student will be introduced to the techniques used
to test software using operational usage models. The student will be introduced to the
steps required to generate these models for software testing including test planning,
user and usage stratification, model generation, test generation, and test result analysis.

ARA SwE Curriculum Framework 113 Version 0.0

LR 64
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Operation &
Maintenance (2.5)

Type of
Instruction:

Workshop

Name of the
Institution:

Esprit Systems Consulting, Inc.

Name of the
Course:

Reverse Engineering & Software Maintenance

Reference: http://www.espritinc.com/pages/structuredseminar/strucsem.html

Location: P.O. Box 1486, West Chester, PA 19380
Phone: (610) 436-8290 Fax: (610) 436-9848
Email: esprit@espritinc.com

Duration: Three Day

Prerequisites: Coding Experience

Attendees: This course is intended for software engineers, maintenance engineers, test engineers,
or anyone responsible for the quality and management of existing software systems.

Description: A coherent methodology for using Yourdon/Constantine structure charts to preserve,
understand and improve legacy software is the subject of these three days. Participants
discuss designs, reverse engineer code and evaluate approaches to legacy
Management.

ARA SwE Curriculum Framework 114 Version 0.0

LR 65
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Operation &
Maintenance (2.5)

Type of
Instruction:

Workshop

Name of the
Institution:

ICSM '99

Name of the
Course:

INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE - 1999

Reference: http://www.cms.dmu.ac.uk/ICSM99/ap.html#tutorials

Location: Keble College, Oxford, England

Duration: 30 August - 3 September, 1999

Prerequisites:

Attendees:

Description: Tutorial T1 (Monday, 30 August, 09.00-17.30):
Understanding and applying the Unified Modeling Language (UML)
The Unified Modeling Language (UML) is an Object Management Group standard
object modeling notation. This tutorial
develops an understanding of UML models that can lead to effective use.

Tutorial T2 (Monday, 30 August, 09.00-12.30):
Designing and evaluating program understanding tools
This tutorial reviews techniques and tools to assist maintainers in program
comprehension and suggests methods for designing or selecting a suitable tool for a
particular project. Topics include cognitive models of program comprehension,
information needs during program understanding, and the evaluation of program
understanding tools. It helps to answer the following three questions:

 Tutorial T3 (Monday, 30 August, 09.00-17.30):
Automated software evolution: From problem to solution
This tutorial illustrates establishing an architecture for automated software evolution in
order to automate maintenance and
reengineering tasks, with live demonstrations of the tools that are discussed.

Tutorial T4 (Monday, 30 August, 09.00-12.30):
Maintenance from the reuse perspective: A synthesis of industrial experiences
This tutorial introduces the essential concepts of software reuse, how they relate to
maintenance, and how to introduce reuse in companies producing software or systems.
A large part of the tutorial is examples and lessons learnt from industrial projects. The
tutorial is the result of the Esprit Project SURPRISE (SURvey on the Possibilities of
Reuse In Software Engineering).

ARA SwE Curriculum Framework 115 Version 0.0

Tutorial T5 (Monday, 30 August, 09.00-17.30):
Software maintenance cost estimation
− Special considerations of maintenance cost estimation
− Maintenance requirements analysis
− Methods of maintenance cost estimation
− Measuring the effect of the existing system
− Making the estimate
− Calibrating the estimate
− Demonstration of automated impact analysis
− Demonstration of automated cost estimation

Tutorial T6 (Monday, 30 August, 14.00-17.30):
Object-oriented re-architecting
The tutorial presents our tool-supported object-oriented re-architecting method CORET
for re-structuring and transforming applications from C to C++. It presents the principles
and methods of object-oriented re-architecting, how to manage uncertainties, how to
integrate the human into the process, and a representative case study in C.

Tutorial T7 (Monday, 30 August, 14.00-17.30):
Software surgery
Pat the Programmer, a developer or maintainer, stares at a piece of code and
contemplates a change. Pat asks the following:
 1.Can I analytically determine if the change is as small as I believe?
 2.Can I be sure that I don't introduce new errors with the change?
 3.Are there any approaches to changing the code that will minimize my effort?
The answer to Pat's questions are "Yes!" This tutorial will show software engineers how
to put boundaries on the effects of a
change and guarantee that no new errors are introduced. The method is applicable to a
wide variety of programming languages.

Tutorial T11 (Tuesday, 31 August, 09.00-17.30):
Round-trip engineering with design patterns, UML, Java and C++
The tutorial presents the state-of-the-art in methodologies and tools for round-trip
engineering of object-oriented software systems. We present: first, semi-automatic
derivation of implementations from design documents; second, the translation of UML
behavior diagrams to Java or C++ code; third, design patterns providing additional
information and means for the derivation of a valid implementation.

Tutorial T12 (Tuesday, 31 August, 09.00-17.30):
A primer on empirical studies
This tutorial provides a sound empirical basis for software and process engineering and
research by focusing on empirical studies. The primary goal is to enable the attendees
to assess the credibility of empirical work either as reported in the software engineering
literature or as done by themselves and to apply the results to their own work. We note
that good empirical science is the result of iterative experimentation and we use this
basis to establish criteria for evaluating both the experimental structures and the
experimental results. We show how to exploit data. We discuss the position of statistics
in our model and the importance of minimal manipulation of data. We present new
techniques such as simulation and sampling.

Tutorial T13 (Tuesday, 31 August, 09.00-17.30):
MORALE: Architectural support for evolution of legacy systems
This tutorial presents an architecture-centric approach to the evolution of legacy
software systems. The tutorial revolves around a

ARA SwE Curriculum Framework 116 Version 0.0

selection of case studies undertaken by the MORALE project, funded by DARPA, a
suite of methods and tools to support the
understanding of the implementation and architecture of complex systems as they
undergo mission-oriented evolution.

Tutorial T14 (Tuesday, 31 August, 09.00-17.30):
Measuring and evaluating the development and maintenance process using
reliability, risk, test, and complexity metrics
This tutorial examines the relationship between product quality and process stability. In
analyzing the stability of a development and maintenance process, it is important that it
not be treated in isolation from the reliability and risk of deploying the software that
result from applying the process. An extensive collection of reliability, test, effort, and
metrics data from the NASA Space Shuttle is used as an example application of the
unified approach.

Tutorial T15 (Tuesday, 31 August, 09.00-17.30):
Software life cycle management
The tutorial shows how to predict and meet the maintenance demands of a much-used
system, from immediate requests for operational support and unpredictable episodes of
trouble-shooting and correction, to longer term needs for responsive changes and to
ultimate replacement. It specifies the key methods of control used to maintain reliable
service under the flux of change, how to organize for immediate support and problem-
solving, and how to design and install functional changes.

ARA SwE Curriculum Framework 117 Version 0.0

LR 66
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Operation &
Maintenance (2.5)

Type of
Instruction:

Self tutorial

Name of the
Institution:

Department of Computer Science University of Victoria

Name of the
Course:

Reverse Engineering Tutorial,
Understanding Software Systems Using Reverse Engineering Technologies Research
and Practice

Reference: http://www.rigi.csc.uvic.ca/UVicRevTut/UVicRevTut.html

Location:

Duration:

Prerequisites:

Attendees:

Description: − Software evolution
− Definitions and context
− Reengineering strategies
− Reverse engineering
− Program understanding
− Selected reverse engineering tools
− Selected research projects
− Selected research challenges

ARA SwE Curriculum Framework 118 Version 0.0

LR 67
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Operation &
Maintenance (2.5)

Type of
Instruction:

Self Tutorial

Name of the
Institution:

SEI

Name of the
Course:

Legacy System Reengineering

Reference: http://www.sei.cmu.edu/reengineering/pubs/lsysree/lsysree.html

Location:

Duration:

Prerequisites:

Attendees:

Description: 1. An engineering perspective
2. A system perspective
3. A software perspective
4. A managerial perspective
5. An evolutionary perspective
6. A maintenance perspective

ARA SwE Curriculum Framework 119 Version 0.0

LR 68
Category of knowledge Area of knowledge Unit of knowledge

• Software Product
Engineering (2)

• Software Operation &
Maintenance (2.5)

Type of
Instruction:

Seminar

Name of the
Institution:

Richard Ball & Associates Inc.

Name of the
Course:

Software Maintenance Strategies and Techniques

Reference: http://www3.pei.sympatico.ca/ball/index.html

Location:

Duration: 3 days

Prerequisites: None

Attendees:
This seminar is aimed at staff involved in performing software maintenance activities:
− Software maintenance practitioners, team leaders, and supervisors
− User coordinators, contacts, and business analysts
− Software developers, Q/A staff and IT auditors

Description: RB&A has the most extensive software maintenance curriculum available. While
working for Imperial Oil, Richard Ball developed a software maintenance methodology
that was adopted as an international standard within Exxon Corporation. The
comprehensive nature of this methodology is reflected in RB&A's software maintenance
training.
Course Outline:
− Software Maintenance: The Problem
− Software Management: The Solution
− Roles & Responsibilities
− Software Acceptance Process: The Key to Delivering Maintainable Software
− Problem Management Process: Solving Operational Difficulties
− Service Request Process: Key to Controlling Software Change
− Scheduled Release (SR) Process: Key to Improved Productivity & Quality
− Release Development Process
− Build/Thread Testing: An Integrated Release Development/Test Approach
− System Performance Monitoring
− Software Improvement Process: Key to Continuous Improvement
− Software Maintainability/Usability Evaluation Process
− Documentation Strategies
− Motivating and Managing SWM Staff

ARA SwE Curriculum Framework 120 Version 0.0

LR 69
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Acquisition (3.6) • Procurement Management
(3.6.1)

Type of
Instruction:

University – Semester course

Name of the
Institution:

Northern Virginia Community College (NVCC)

Name of the
Course:

ACQ 121
INTRODUCTION TO ACQUISITION AND PROCUREMENT FUNDAMENTALS I

Reference: http://www.nv.cc.va.us/catalog/cat98/descript/acq121.htm

Location: 4001 Wakefield Chapel Road
Annandale, Virginia 22003-3796
Telephone: (703) 323-3000

Duration: Lecture 3 hours per week.

Prerequisites: None

Attendees: Any

Description: Introduces technical and fundamental procedures of government acquisition and
procurement. Focuses on appropriations and funding, competition requirements, types
of specifications, and contractor qualifications. (For those institutions certified, satisfies
requirements of the mandatory Department of Defense (DOD) course, Contracting
Fundamentals, when combined with ACQ 122 and DOD materials.)

ARA SwE Curriculum Framework 121 Version 0.0

LR 70
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Acquisition (3.6)

Type of
Instruction:

Seminar

Name of the
Institution:

National Capital Training Center

Name of the
Course:

Reference: http://grad.usda.gov/reg/cat9943b2.html#On-site
600 Maryland Avenue SW, Suite 280
Washington, DC 20024-2520
Phone: (202) 314-3400
FAX: (202) 479-6810
TDD: (202) 314-3450
TOLL-FREE: (888) 744-GRAD

Location: On site

Duration: 2 to 5 days

Prerequisites:

Attendees:

Description: The following courses are available for delivery on-site at a location of your choice. For
more information, contact the Training Center serving your state or call (202) 314-3406.
Acquisition Management for Executives and Managers
43TC 2 Days FaxBack # 1720
Basic Lease Contracting
43TD 5 Days FaxBack # 1731
Construction Contracting
43TE 5 Days FaxBack # 1738
Federal Contracts: Default and Procurement
43PX 5 Days FaxBack # 1760
Formation of Government Contracts
43TF 3 Days FaxBack # 1878

ARA SwE Curriculum Framework 122 Version 0.0

LR 71
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Acquisition (3.6)

Type of
Instruction:

Seminar

Name of the
Institution:

National Capital Training Center

Name of the
Course:

Acquisition Reform Overview

Reference: http://grad.usda.gov/reg/cat9943b1.html#43PL

Location: 600 Maryland Avenue SW, Suite 280
Washington, DC 20024-2520
Phone: (202) 314-3400
FAX: (202) 479-6810
TDD: (202) 314-3450 TOLL-FREE: (888) 744-GRAD

Duration: 1 day

Prerequisites:

Attendees: Federal, state and local government personnel and others involved in the federal
contracting process.

Description: Become familiar with the major changes resultant from the new procurement reform
legislation ; Gain an understanding of federal acquisition laws:
− Federal Acquisition Streamlining Act (FASA)
− Techniques for micro-purchases
− The Simplified Acquisition Methodology
− The Federal Acquisition Computer Network (FACNET)
− Procurement of commercial items
− Changes to the Truth in Negotiations Act (TINA)
− Changes in task and delivery order contracting methods
− Federal Acquisition Reform Act (FARA)
− Streamlined competition requirements
− Simplified procedures for commercial item acquisitions up to $5 million
− Changes in debriefing procedures
− Decoupling FACNET from the use of simplified acquisition procedures
− Revision of procurement integrity laws
− Information Technology Management Reform Act (ITMRA)
− Repeal of central authority of the GSA Administrator
− Repeal of the authority of General Services Board of Contract Appeals to hear IT

protests
− Revision of the process for acquisitions of Information Technology
− Expansion of protest authority of the Comptroller General

ARA SwE Curriculum Framework 123 Version 0.0

LR 72
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Acquisition (3.6) • Procurement Management
(3.6.1)

• Acquisition Planning (3.6.2)

Type of
Instruction:

Computer Based Instruction

Name of the
Institution:

National Program Office for Computer Based Instruction

Name of the
Course:

Project Management: Procurement

Reference: http://faawbt.jccbi.gov/cbtlib/htmlplan/cbtweb/curicula/courses/PROJ12E/PROJ12E.htm

Location:

Duration: 4 hours

Prerequisites: A general understanding of the nature of projects; completion of the course Project
Management; Fundamentals

Attendees: Trainee project managers; consultants in project management; experienced project
managers who need a refresher of evolving technologies; senior managers who employ
or manage project managers

Description: To examine the procedures whereby goods and services may have to be procured from
outside sources for the project, including an examination of the various types of contract
that may be required

Topics Covered
Procurement planning
− Assessing procurement needs
− Types of contract
− Procurement management plan
Solicitation
− Solicitation planning
− The solicitation process
− Awarding the contract
Contract administration and closeout
− Administering the contract
− Contract change control
− Contract closeout

ARA SwE Curriculum Framework 124 Version 0.0

LR 73
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Acquisition (3.6) • Procurement Management
(3.6.1)

Type of
Instruction:

Course

Name of the
Institution:

Federal Aviation Administration Center for Management Development

Name of the
Course:

05603, Acquire Purchasing Training

Reference: http://www.academy.jccbi.gov/

Location: FAA ACADEMY & CMD TRAINING COURSES

Duration: 24 hours

Prerequisites: None

Attendees: FAA procurement specialists, contracting officers, and others

Description: The objective of the acquire training is to train FAA procurement specialists, contracting
officers, and others on the new Acquire system being installed to replace the current
System for Acquisition Management (SAM). Training will be lecture and hands-on
activities. Training will be structured around requisitioning, requisition approval, and fund
certification activities. The four components are; 1) functional training; 2) business
process training; 3) functional overview; 4) purchasing overview. Each trainee will
receive an Acquire training manual to achieve course objectives and to use as a
reference guide for the system and an instructional guide.

ARA SwE Curriculum Framework 125 Version 0.0

LR 74
Category of knowledge Area of knowledge Unit of knowledge

• Software Management (3) • Software Acquisition (3.6) • Procurement Management
(3.6.1)

Type of
Instruction:

Seminar

Name of the
Institution:

Office of Acquisition Management Training and Certification

Name of the
Course:

See catalog

Reference: http://www.os.dhhs.gov/progorg/oam/training.html

Location: See catalog

Duration:
See catalog

Prerequisites:

Attendees:

Description: The Procurement Training Program is designed to develop a highly qualified
professional procurement workforce. The Procurement Training Program consists of
fourteen core and seven specialized courses for individuals in procurement positions.

OAM provides leadership in the development of procurement policy and conducts
performance measurement of the HHS acquisition program; fosters procurement
innovation and reform; manages the acquisition training and certification program;
defends bid protests; and maintains the HHS procurement data reporting system. OAM
serves as liaison to Congress, OMB, GAO, and other Federal agencies.

	INTRODUCTION
	BACKGROUND
	CURRICULUM FRAMEWORK
	Software Engineering Competency Study, Phase II
	Competency Measures

	SOFTWARE ENGINEERING COMPETENCY REQUIREMENTS
	ACQUISITION
	Competency Matrix
	Elaboration of the Competency Requirements for the Acquisition Specialty
	Basic Software engineering Knowledge
	Computing Fundamentals
	Software Product Engineering
	Software Requirements
	Software Management
	Software Acquisition
	Product Quality Control
	Software Domains

	TESTING
	Competency Matrix
	Elaboration of the Competency Requirements for the Testing Specialty
	Basic Software engineering Knowledge
	Computing Fundamentals
	Software Product Engineering
	Software Testing
	Software Management
	Product Quality Control
	Software Domains

	MAINTENANCE
	Competency Matrix
	Elaboration of the Competency Requirements for the Maintenance Specialty
	Basic Software Engineering Knowledge
	Computing Fundamentals
	Software Product Engineering
	Software Implementation
	Software Maintenance Fundamentals
	Software Management

	SOFTWARE ENGINEERING CURRICULUM SPECIFICATION
	CURRICULUM ORGANIZATION
	LEARNING MODULE SPECIFICATIONS
	Basic Software Engineering Knowledge
	Computing Fundamentals
	Software Domains
	Software Management (Fundamental)
	Software Management (Advanced)
	Product Quality Control
	Software Product Engineering (Basic)
	Software Product Engineering (Intermediate)
	Software Product Engineering (Advanced)
	Software Implementation
	Software Requirements
	Software Testing
	Software Maintenance
	Software Acquisition

	REFERENCES
	APPENDIX A: LEARNING RESOURCES

